Experiments

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

Tianjun Ke^{†*} Haoqun Cao^{†*} Zenan Ling[‡] Feng Zhou^{†§}

[†]Center for Applied Statistics and School of Statistics, Renmin University of China [‡]School of EIC, Huazhong University of Science and Technology

November 11, 2023

*Equal contributions. \$Corresponding author. Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification 1 / 27

Experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで

1 Introduction

2 Method

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	2 / 27

Experiments

1 Introduction

2 Method

3 Experiments

- ▲日マ ▲国マ ▲田マ ▲田マ ▲日マ

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	3 / 27

Method 000000000000000 Experiments

< D > < A

Conclusion

Meta-learning

Meta-learning involves learning from a set of tasks in order to acquire knowledge and generalize to new tasks.

 Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou
 RUC, HUST

 Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification
 4 / 27

A GP is a probability distribution over functions, where f(x) evaluated at a set of inputs have a joint Gaussian distribution. In the context of a *C*-class classification problem, separate GP latent functions $\{f^c\}_{c=1}^C$ are employed to model the logits for each class.

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	5 / 27

イロト 不得下 イヨト イヨト 二日

Deep Kernel combines kernel methods and neural networks, extending traditional covariance functions by integrating a deep architecture into the base kernel formulation. The deep kernel is defined as

$$k(\mathbf{x}, \mathbf{x}' \mid \boldsymbol{\theta}, \mathbf{w}) = k'(g_{\mathbf{w}}(\mathbf{x}), g_{\mathbf{w}}(\mathbf{x}') \mid \boldsymbol{\theta}),$$

where k' represents the base kernel with parameters θ and g is a deep neural network parametrized by w.

< < >> < <</>

Motivation

- 1. The widely used softmax likelihood does not lead to conjugacy for GPs, making posterior inference intractable in classification.
- 2. While being conditional conjugate, the logistic-softmax function tends to exhibit an inherent lack of confidence.
- 3. Most GP-based meta-learning models employ Gibbs sampling for posterior inference, which can be computationally demanding for convergence.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 </p>

1 Introduction

2 Method

Logistic-softmax with Temperature Application in Bayesian Meta-learning

3 Experiments

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	8 / 27

イロト イボト イヨト イヨト 二日

1 Introduction

2 Method

Logistic-softmax with Temperature

Application in Bayesian Meta-learning

3 Experiments

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	9 / 27

We define the logistic-softmax function with temperature as:

$$p(y = k \mid \mathbf{f}_n) = \frac{\sigma(f_n^k/\tau)}{\sum_{c=1}^C \sigma(f_n^c/\tau)},$$

where we assume C classes, $f_n^c = f^c(\mathbf{x}_n)$, $\mathbf{f}_n = [f_n^1, \dots, f_n^C]^\top$, $k \in [C] := \{1, \dots, C\}$, τ is the temperature parameter and $\sigma(\cdot)$ is the logistic function.

<ロ> <同> <同> <巨> <巨><</p>

Experiments

イロト イボト イヨト イヨト

Limiting Behavior

Although reminiscent of the softmax likelihood with temperature, the logistic-softmax likelihood displays distinct limiting behavior.

Limiting Behavior

Denote the logistic-softmax function with temperature as $LS(\mathbf{f}_n, \tau)$. Define $I := \{i : f_n^i > 0\} \subset [C]$, we have

$$\lim_{\tau \to 0^+} \mathrm{LS}(\mathbf{f}_n, \tau) = \begin{cases} \mathbf{e}_{c^*}, & \text{if } \max_{c \in [C]} f_n^c < 0 \text{ and } c^* = \operatorname*{argmax}_{c \in [C]} f_n^c \\ \frac{1}{|I|} \sum_{c \in I} \mathbf{e}_c, & \text{if } \max_{c \in [C]} f_n^c > 0 \end{cases}$$

where $e_c \in \mathbb{R}^C$ is the one-hot vector with a 1 in its c-th coordinate.

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng ZhouRUC, HUSTRevisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification11 / 27

<ロト < 回ト < 回ト < 三ト < 三ト</p>

Comparison of Logistic-softmax and Softmax with Temperature

We present several results demonstrating that logistic-softmax surpasses softmax as a versatile categorical likelihood function theoretically.

Pointwise Convergence

For all $\mathbf{f}_n \in \mathbb{R}^C$, $\tau \in \mathbb{R} \setminus \{0\}$ and $C_0 \in \mathbb{R}$, we have

$$\lim_{C'\to+\infty} \mathrm{LS}(\mathbf{f}_n - C', \tau) = \mathrm{S}(\mathbf{f}_n, \tau) = \mathrm{S}(\mathbf{f}_n - C_0, \tau),$$

where $S(\mathbf{f}_n, \tau)$ denotes the softmax function with temperature.

イロン イ団 とくほ とくほとう

Comparison of Logistic-softmax and Softmax with Temperature

Larger Size of Data Modelling Distribution Family

Assume the logits $f^c \sim \mathcal{GP}(a, k^c)$, where a is the mean function and k^c is the kernel function for each class $c \in [C]$. Denote $\mathbf{y} = [y_1, \ldots, y_N]^\top$ as the random label vector of N given points. Suppose $a \in \mathscr{A}$ and $k^c \in \mathscr{K}$, where \mathscr{A} and \mathscr{K} are two function classes. Define $\mathscr{F}(\ell \mid \mathscr{A}, \mathscr{K})$ as the family of the marginal distribution $p(\mathbf{y} \mid \mathbf{X}, a, k^c)$ induced by $a \in \mathscr{A}$ and $k^c \in \mathscr{K}$ on given points $\mathbf{X} \in \mathbb{R}^{N \times p}$ with a likelihood function ℓ . Under mild condition on \mathscr{A} , we have

$$\mathscr{F}(\mathbf{S} \mid \mathscr{A}, \mathscr{K}) = \mathscr{F}(\mathbf{S} \mid \mathscr{K}).$$

Furthermore, we have

$$\mathscr{F}(\mathcal{S} \mid \mathscr{A}, \mathscr{K}) \subset \mathscr{F}(\mathcal{LS} \mid \mathscr{K}).$$

 Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou
 RUC, HUST

 Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification
 13 / 27

Figure: Plot of $p(y = 1|\mathbf{f})$ where f_3 clamped to -100. We provide separate zoom-in plots of softmax and logistic-softmax in the 2nd row. In the upper-right area (where all f_1 and f_2 are greater than 0), the logistic-softmax function exhibits unique probability patterns that softmax cannot model. In the bottom-left area (where all f_1 and f_2 are smaller than 0), logistic-softmax accurately approximates softmax.

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	14 / 27

イロト イポト イヨト イヨト

Introduction Me 00000 00			Metho	od 2000000000	Experiments 000		Conclusior
~		C 1		с.	5.1 T		

Comparison of Logistic-softmax and Softmax with Temperature

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	15 / 27

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

イロン イロン イヨン イヨン 三日

1 Introduction

2 Method

Logistic-softmax with Temperature Application in Bayesian Meta-learning

3 Experiments

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	16 / 27

Denote the input support and query data of task t as D_t^x , the target data as D_t^y . D^x and D^y are the collections of these datasets over all tasks. The marginal likelihood takes the form

$$p(D^{y} \mid D^{x}, \Theta) = \prod_{t} \int p(D_{t}^{y} \mid D_{t}^{x}, \phi_{t}) p(\phi_{t} \mid \Theta) d\phi_{t}.$$

$$\uparrow task-common hyperparameters of deep kernel$$

The goal is to learn a generalizable Θ via iterative bi-level optimization.

< ∃ > < ∃ >

Three sets of auxiliary latent variables are augmented to expand the logistic-softmax likelihood to obtain a conditional conjugate model for each task, including Gamma variables λ , Poisson variables **M**, and Pólya-Gamma variables Ω .

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

RUC, HUST

《曰》《圖》《臣》《臣》

In the mean-field algorithm, we need to approximate the true posterior $p(\lambda, \mathbf{M}, \Omega, \mathbf{F} | \mathbf{Y})$ by a variational distribution. Here, we assume $q(\lambda, \mathbf{M}, \Omega, \mathbf{F}) = q_1(\mathbf{M}, \Omega)q_2(\lambda, \mathbf{F})$ and obtain the optimal density for each factor:

$$q_{1}(\mathbf{\Omega}|\mathbf{M}) = \prod_{n,c=1}^{N,C} \mathsf{PG}(\omega_{n}^{c} \mid m_{n}^{c} + y_{n}^{c}, \widetilde{f}_{n}^{c}), \quad q_{2}(\mathbf{\lambda}) = \prod_{n=1}^{N} \mathsf{Ga}(\lambda_{n} \mid \alpha_{n}, C),$$
$$q_{1}(\mathbf{M}) = \prod_{n,c=1}^{N,C} \mathsf{Po}(m_{n}^{c} \mid \gamma_{n}^{c}), \qquad q_{2}(\mathbf{F}) = \prod_{c=1}^{C} \mathcal{N}(\mathbf{f}^{c} \mid \widetilde{\boldsymbol{\mu}}^{c}, \widetilde{\boldsymbol{\Sigma}}^{c}),$$

∃ > < ∃ >

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

RUC, HUST 19 / 27

Meta-level Optimization

The marginal likelihood is not tractable. Therefore we maximize the evidence lower bound (ELBO) to optimize Θ , which has an analytical expression because of the data augmentation. Moreover, we also consider predictive likelihood (PL), whose approximate gradient estimator is given by

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{PL}} \approx \frac{1}{M} \sum_{m=1}^{M} \nabla_{\boldsymbol{\theta}} \log p(y_* = k \mid \mathbf{x}_*, \mathbf{X}, \mathbf{Y}, \widehat{\boldsymbol{\Theta}}),$$

where M denotes the number of samples.

The predictive probability of test label $y_* = k$ is:

$$p(y_* = k \mid \mathbf{x}_*, \mathbf{X}, \mathbf{Y}, \widehat{\mathbf{\Theta}}) = \int p(y_* = k \mid \mathbf{f}_*) \prod_{c=1}^C q(f_*^c \mid \mathbf{X}, \mathbf{Y}, \widehat{\mathbf{\Theta}}) d\mathbf{f}_*,$$
$$q(f_*^c \mid \mathbf{X}, \mathbf{Y}, \widehat{\mathbf{\Theta}}) = \int p(f_*^c \mid \mathbf{f}^c) q(\mathbf{f}^c \mid \mathbf{X}, \mathbf{Y}, \widehat{\mathbf{\Theta}}) d\mathbf{f}^c = \mathcal{N}(f_*^c \mid \mu_*^c, \sigma_*^{2^c}),$$

where $\sigma_{*}^{2^c} = \mathbf{k}_{**}^c - \mathbf{k}_{*l}^c \mathbf{K}_{ll}^{c^{-1}} \mathbf{k}_{l*}^c + \mathbf{k}_{*l}^c \mathbf{K}_{ll}^{c^{-1}} \boldsymbol{\Sigma}^c \mathbf{K}_{ll}^{c^{-1}} \mathbf{k}_{l*}^c$ and $\mu_*^c = \mathbf{k}_{*l}^c \mathbf{K}_{ll}^{c^{-1}} \widetilde{\boldsymbol{\mu}}^c$.

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

RUC, HUST 21 / 27

Experiments

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─目 ─のへで

1 Introduction

2 Method

3 Experiments

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	22 / 27

Few-shot Classification and Domain Transfer

Table: Average 1-shot and 5-shot accuracy and standard deviation on 5-way few-shot classification. Results are evaluated over 5 batches of 600 episodes with different random seeds. We highlight the best results in bold.

	CI	JB	mini-ImageNet		mini-ImageNet \rightarrow CUB	
Method	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Feature Transfer	46.19 ± 0.64	68.40 ± 0.79	39.51 ± 0.23	60.51 ± 0.55	32.77 ± 0.35	50.34 ± 0.27
Baseline++	61.75 ± 0.95	78.51 ± 0.59	47.15 ± 0.49	66.18 ± 0.18	39.19 ± 0.12	$\textbf{57.31} \pm \textbf{0.11}$
MatchingNet	60.19 ± 1.02	75.11 ± 0.35	48.25 ± 0.65	62.71 ± 0.44	36.98 ± 0.06	50.72 ± 0.36
ProtoNet	52.52 ± 1.90	75.93 ± 0.46	44.19 ± 1.30	64.07 ± 0.65	33.27 ± 1.09	52.16 ± 0.17
RelationNet	62.52 ± 0.34	78.22 ± 0.07	48.76 ± 0.17	64.20 ± 0.28	37.13 ± 0.20	51.76 ± 1.48
MAML	56.11 ± 0.69	74.84 ± 0.62	45.39 ± 0.49	61.58 ± 0.53	34.01 ± 1.25	48.83 ± 0.62
DKT + Cosine	63.37 ± 0.19	77.73 ± 0.26	48.64 ± 0.45	62.85 ± 0.37	40.22 ± 0.54	55.65 ± 0.05
Bayesian MAML	55.93 ± 0.71	72.87 ± 0.26	44.46 ± 0.30	62.60 ± 0.25	33.52 ± 0.36	51.35 ± 0.16
Bayesian MAML (Chaser)	53.93 ± 0.72	71.16 ± 0.32	43.74 ± 0.46	59.23 ± 0.34	36.22 ± 0.50	51.53 ± 0.43
ABML	49.57 ± 0.42	68.94 ± 0.16	37.65 ± 0.22	56.08 ± 0.29	29.35 ± 0.26	45.74 ± 0.33
LS (Gibbs) + Cosine (ML)	60.23 ± 0.54	74.58 ± 0.25	46.75 ± 0.20	59.93 ± 0.31	36.41 ± 0.18	50.33 ± 0.13
LS (Gibbs) + Cosine (PL)	60.07 ± 0.29	78.14 ± 0.07	47.05 ± 0.20	66.01 ± 0.25	36.73 ± 0.26	56.70 ± 0.31
OVE PG GP + Cosine (ML)	63.98 ± 0.43	77.44 ± 0.18	$\textbf{50.02} \pm \textbf{0.35}$	64.58 ± 0.31	39.66 ± 0.18	55.71 ± 0.31
OVE PG GP + Cosine (PL)	60.11 ± 0.26	79.07 ± 0.05	48.00 ± 0.24	$\textbf{67.14} \pm \textbf{0.23}$	37.49 ± 0.11	57.23 ± 0.31
CDKT + Cosine (ML) ($\tau < 1$)	$\textbf{65.21} \pm \textbf{0.45}$	$\textbf{79.10} \pm \textbf{0.33}$	47.54 ± 0.21	63.79 ± 0.15	$\textbf{40.43} \pm \textbf{0.43}$	55.72 ± 0.45
$CDKT + Cosine (ML) (\tau = 1)$	60.85 ± 0.38	75.98 ± 0.33	43.50 ± 0.17	59.69 ± 0.20	35.57 ± 0.30	52.42 ± 0.50
$CDKT + Cosine (PL) (\tau < 1)$	59.49 ± 0.35	76.95 ± 0.28	44.97 ± 0.25	60.87 ± 0.24	39.18 ± 0.34	56.18 ± 0.28
$CDKT + Cosine (PL) (\tau = 1)$	52.91 ± 0.29	73.34 ± 0.40	40.29 ± 0.14	60.23 ± 0.16	37.62 ± 0.32	54.32 ± 0.19

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 - つへで

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

Experiments

Uncertainty Quantification

Table: Expected calibration error (ECE) and maximum calibration error (MCE) for 5-shot 5-way tasks on CUB, mini-ImageNet, and domain-transfer. All metrics are computed on 3,000 random tasks from the test set.

	C	JB	mini-ImageNet		mini-Imag	eNet→CUB
Method	ECE	MCE	ECE	MCE	ECE	MCE
Feature Transfer	0.187	0.250	0.368	0.641	0.275	0.646
Baseline++	0.421	0.502	0.395	0.598	0.315	0.537
MatchingNet	0.023	0.031	0.019	0.043	0.030	0.079
ProtoNet	0.034	0.059	0.035	0.050	0.009	0.025
RelationNet	0.438	0.593	0.330	0.596	0.234	0.554
DKT + Cosine	0.187	0.250	0.287	0.446	0.236	0.426
Bayesian MAML	0.018	0.047	0.027	0.049	0.048	0.077
Bayesian MAML (Chaser)	0.047	0.104	0.010	0.071	0.066	0.260
LS (Gibbs) + Cosine (ML)	0.371	0.478	0.277	0.490	0.220	0.513
LS (Gibbs) + Cosine (PL)	0.024	0.038	0.026	0.041	0.022	0.042
OVE PG GP + Cosine (ML)	0.026	0.043	0.026	0.039	0.049	0.066
OVE PG GP + Cosine (PL)	0.005	0.023	0.008	0.016	0.020	0.032
CDKT + Cosine (ML)	0.005	0.036	0.009	0.015	0.007	0.020
CDKT + Cosine (PL)	0.018	0.223	0.025	0.140	0.010	0.029

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification

RUC. HUST

24 / 27

Experiments

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─目 ─のへで

1 Introduction

2 Method

3 Experiments

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	25 / 27

< < >> < <</>

∃ >

Conclusion

- Introduced the logistic-softmax function with temperature
- Delved into the theoretical property of the redesigned logistic-softmax function and its comparison with softmax
- Applied mean-field approximation for deep kernel based GP meta-learning for the first time
- Verified the results via extensive real-data experiments
- Shed some light on the coordination problem between the inner loop and the outer loop that appeared in bi-level optimization

Conclusion ○○●

◆□> ◆□> ◆三> ◆三> ・三 ・ 少へ⊙

Thanks!

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou	RUC, HUST
Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification	27 / 27