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Meta-learning

Meta-learning involves learning from a set of tasks in order to
acquire knowledge and generalize to new tasks.

Tianjun Ke, Haoqun Cao, Zenan Ling, Feng Zhou RUC, HUST

Revisiting Logistic-softmax Likelihood in Bayesian Meta-learning for Few-shot Classification 4 / 27



Introduction Method Experiments Conclusion

Gaussian Process (GP) Classification

A GP is a probability distribution over functions, where f(x)
evaluated at a set of inputs have a joint Gaussian distribution. In
the context of a C-class classification problem, separate GP latent
functions {f c}Cc=1 are employed to model the logits for each class.
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Deep Kernel

Deep Kernel combines kernel methods and neural networks,
extending traditional covariance functions by integrating a deep
architecture into the base kernel formulation. The deep kernel is
defined as

k(x,x′ | θ,w) = k′(gw(x), gw(x
′) | θ),

where k′ represents the base kernel with parameters θ and g is a
deep neural network parametrized by w.
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Motivation

1. The widely used softmax likelihood does not lead to conjugacy
for GPs, making posterior inference intractable in classification.

2. While being conditional conjugate, the logistic-softmax
function tends to exhibit an inherent lack of confidence.

3. Most GP-based meta-learning models employ Gibbs sampling
for posterior inference, which can be computationally
demanding for convergence.
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Definition of Logistic-softmax with Temperature

We define the logistic-softmax function with temperature as:

p(y = k | fn) =
σ(fk

n/τ)∑C
c=1 σ(f

c
n/τ)

,

where we assume C classes, f c
n = f c(xn), fn = [f1

n, . . . , f
C
n ]⊤,

k ∈ [C] := {1, . . . , C}, τ is the temperature parameter and σ(·) is
the logistic function.
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Limiting Behavior

Although reminiscent of the softmax likelihood with temperature,
the logistic-softmax likelihood displays distinct limiting behavior.

Limiting Behavior

Denote the logistic-softmax function with temperature as LS(fn, τ).
Define I := {i : f i

n > 0} ⊂ [C], we have

limτ→0+ LS(fn, τ) =


ec∗ , if max

c∈[C]
f c
n < 0 and c∗ = argmax

c∈[C]
f c
n

1

|I|
∑
c∈I

ec, if max
c∈[C]

f c
n > 0

where ec ∈ RC is the one-hot vector with a 1 in its c-th coordinate.
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Comparison of Logistic-softmax and Softmax with Temperature

We present several results demonstrating that logistic-softmax
surpasses softmax as a versatile categorical likelihood function
theoretically.

Pointwise Convergence

For all fn ∈ RC , τ ∈ R \ {0} and C0 ∈ R, we have

lim
C′→+∞

LS(fn − C ′, τ) = S(fn, τ) = S(fn − C0, τ),

where S(fn, τ) denotes the softmax function with temperature.
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Comparison of Logistic-softmax and Softmax with Temperature

Larger Size of Data Modelling Distribution Family

Assume the logits f c ∼ GP(a, kc), where a is the mean function
and kc is the kernel function for each class c ∈ [C]. Denote
y = [y1, . . . , yN ]⊤ as the random label vector of N given points.
Suppose a ∈ A and kc ∈ K , where A and K are two function
classes. Define F (ℓ | A ,K ) as the family of the marginal
distribution p(y|X, a, kc) induced by a ∈ A and kc ∈ K on given
points X ∈ RN×p with a likelihood function ℓ. Under mild
condition on A , we have

F (S | A ,K ) = F (S | K ).

Furthermore, we have
F (S | A ,K ) ⊂ F (LS | K ).
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Comparison of Logistic-softmax and Softmax with Temperature

Figure: Plot of p(y = 1|f) where f3 clamped to −100. We provide
separate zoom-in plots of softmax and logistic-softmax in the 2nd row. In
the upper-right area (where all f1 and f2 are greater than 0), the
logistic-softmax function exhibits unique probability patterns that
softmax cannot model. In the bottom-left area (where all f1 and f2 are
smaller than 0), logistic-softmax accurately approximates softmax.
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Comparison of Logistic-softmax and Softmax with Temperature

Logistic-softmax
One-hot

Uniform

Softmax Pattern 1

Pattern 2
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Framework of Bayesian Meta-learning

Denote the input support and query data of task t as Dx
t , the

target data as Dy
t . Dx and Dy are the collections of these datasets

over all tasks. The marginal likelihood takes the form

p(Dy | Dx, Θ ) =
∏
t

∫
p(Dy

t | Dx
t , ϕt )p(ϕt | Θ)dϕt.

task-common hyperparameters of deep kernel

task-specific parameters

The goal is to learn a generalizable Θ via iterative bi-level
optimization.
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Task-level Bayesian Inference

Three sets of auxiliary latent variables are augmented to expand the
logistic-softmax likelihood to obtain a conditional conjugate model
for each task, including Gamma variables λ, Poisson variables M,
and Pólya-Gamma variables Ω.

p(Y,λ,M,Ω,F)

=
N∏

n=1

C∏
c=1

2−(ycn+mc
n) exp

(
ycn −mc

n

2

f c
n

τ
− ωc

n

2

(f c
n

τ

)2
)

· PG(ωc
n | mc

n + ycn, 0)
λ
mc

n
n

mc
n!

exp(−λn) ·
C∏
c=1

N (f c | ac,Kc).
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Mean-field Approximation

In the mean-field algorithm, we need to approximate the true
posterior p(λ,M,Ω,F | Y) by a variational distribution. Here, we
assume q(λ,M,Ω,F) = q1(M,Ω)q2(λ,F) and obtain the optimal
density for each factor:

q1(Ω|M) =

N,C∏
n,c=1

PG(ωc
n | mc

n + ycn, f̃
c
n),

q1(M) =

N,C∏
n,c=1

Po(mc
n | γcn),

q2(λ) =
N∏

n=1

Ga(λn | αn, C),

q2(F) =
C∏
c=1

N (f c | µ̃c, Σ̃c),
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Meta-level Optimization

The marginal likelihood is not tractable. Therefore we maximize
the evidence lower bound (ELBO) to optimize Θ, which has an
analytical expression because of the data augmentation. Moreover,
we also consider predictive likelihood (PL), whose approximate
gradient estimator is given by

∇θLPL ≈ 1

M

M∑
m=1

∇θ log p(y∗ = k | x∗,X,Y, Θ̂),

where M denotes the number of samples.
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Prediction

The predictive probability of test label y∗ = k is:

p(y∗ = k | x∗,X,Y, Θ̂) =

∫
p(y∗ = k | f∗)

C∏
c=1

q(f c
∗ | X,Y, Θ̂)df∗,

q(f c
∗ | X,Y, Θ̂) =

∫
p(f c

∗ | f c)q(f c | X,Y, Θ̂)df c = N (f c
∗ | µc

∗, σ
2
∗
c
),

where σ2
∗
c
= kc∗∗ − kc

∗lK
c−1

ll kc
l∗ + kc

∗lK
c−1

ll Σ̃cKc−1

ll kc
l∗ and

µc
∗ = kc

∗lK
c−1

ll µ̃c.
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Few-shot Classification and Domain Transfer

Table: Average 1-shot and 5-shot accuracy and standard deviation on
5-way few-shot classification. Results are evaluated over 5 batches of 600
episodes with different random seeds. We highlight the best results in
bold.

CUB mini-ImageNet mini-ImageNet → CUB
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Feature Transfer 46.19 ± 0.64 68.40 ± 0.79 39.51 ± 0.23 60.51 ± 0.55 32.77 ± 0.35 50.34 ± 0.27
Baseline++ 61.75 ± 0.95 78.51 ± 0.59 47.15 ± 0.49 66.18 ± 0.18 39.19 ± 0.12 57.31 ± 0.11
MatchingNet 60.19 ± 1.02 75.11 ± 0.35 48.25 ± 0.65 62.71 ± 0.44 36.98 ± 0.06 50.72 ± 0.36
ProtoNet 52.52 ± 1.90 75.93 ± 0.46 44.19 ± 1.30 64.07 ± 0.65 33.27 ± 1.09 52.16 ± 0.17
RelationNet 62.52 ± 0.34 78.22 ± 0.07 48.76 ± 0.17 64.20 ± 0.28 37.13 ± 0.20 51.76 ± 1.48
MAML 56.11 ± 0.69 74.84 ± 0.62 45.39 ± 0.49 61.58 ± 0.53 34.01 ± 1.25 48.83 ± 0.62
DKT + Cosine 63.37 ± 0.19 77.73 ± 0.26 48.64 ± 0.45 62.85 ± 0.37 40.22 ± 0.54 55.65 ± 0.05
Bayesian MAML 55.93 ± 0.71 72.87 ± 0.26 44.46 ± 0.30 62.60 ± 0.25 33.52 ± 0.36 51.35 ± 0.16
Bayesian MAML (Chaser) 53.93 ± 0.72 71.16 ± 0.32 43.74 ± 0.46 59.23 ± 0.34 36.22 ± 0.50 51.53 ± 0.43
ABML 49.57 ± 0.42 68.94 ± 0.16 37.65 ± 0.22 56.08 ± 0.29 29.35 ± 0.26 45.74 ± 0.33
LS (Gibbs) + Cosine (ML) 60.23 ± 0.54 74.58 ± 0.25 46.75 ± 0.20 59.93 ± 0.31 36.41 ± 0.18 50.33 ± 0.13
LS (Gibbs) + Cosine (PL) 60.07 ± 0.29 78.14 ± 0.07 47.05 ± 0.20 66.01 ± 0.25 36.73 ± 0.26 56.70 ± 0.31
OVE PG GP + Cosine (ML) 63.98 ± 0.43 77.44 ± 0.18 50.02 ± 0.35 64.58 ± 0.31 39.66 ± 0.18 55.71 ± 0.31
OVE PG GP + Cosine (PL) 60.11 ± 0.26 79.07 ± 0.05 48.00 ± 0.24 67.14 ± 0.23 37.49 ± 0.11 57.23 ± 0.31

CDKT + Cosine (ML) (τ < 1) 65.21 ± 0.45 79.10 ± 0.33 47.54 ± 0.21 63.79 ± 0.15 40.43 ± 0.43 55.72 ± 0.45
CDKT + Cosine (ML) (τ = 1) 60.85 ± 0.38 75.98 ± 0.33 43.50 ± 0.17 59.69 ± 0.20 35.57 ± 0.30 52.42 ± 0.50
CDKT + Cosine (PL) (τ < 1) 59.49 ± 0.35 76.95 ± 0.28 44.97 ± 0.25 60.87 ± 0.24 39.18 ± 0.34 56.18 ± 0.28
CDKT + Cosine (PL) (τ = 1) 52.91 ± 0.29 73.34 ± 0.40 40.29 ± 0.14 60.23 ± 0.16 37.62 ± 0.32 54.32 ± 0.19
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Uncertainty Quantification

Table: Expected calibration error (ECE) and maximum calibration error
(MCE) for 5-shot 5-way tasks on CUB, mini-ImageNet, and
domain-transfer. All metrics are computed on 3,000 random tasks from
the test set.

CUB mini-ImageNet mini-ImageNet→CUB
Method ECE MCE ECE MCE ECE MCE

Feature Transfer 0.187 0.250 0.368 0.641 0.275 0.646
Baseline++ 0.421 0.502 0.395 0.598 0.315 0.537
MatchingNet 0.023 0.031 0.019 0.043 0.030 0.079
ProtoNet 0.034 0.059 0.035 0.050 0.009 0.025
RelationNet 0.438 0.593 0.330 0.596 0.234 0.554
DKT + Cosine 0.187 0.250 0.287 0.446 0.236 0.426
Bayesian MAML 0.018 0.047 0.027 0.049 0.048 0.077
Bayesian MAML (Chaser) 0.047 0.104 0.010 0.071 0.066 0.260
LS (Gibbs) + Cosine (ML) 0.371 0.478 0.277 0.490 0.220 0.513
LS (Gibbs) + Cosine (PL) 0.024 0.038 0.026 0.041 0.022 0.042
OVE PG GP + Cosine (ML) 0.026 0.043 0.026 0.039 0.049 0.066
OVE PG GP + Cosine (PL) 0.005 0.023 0.008 0.016 0.020 0.032

CDKT + Cosine (ML) 0.005 0.036 0.009 0.015 0.007 0.020
CDKT + Cosine (PL) 0.018 0.223 0.025 0.140 0.010 0.029
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Conclusion

• Introduced the logistic-softmax function with temperature
• Delved into the theoretical property of the redesigned

logistic-softmax function and its comparison with softmax
• Applied mean-field approximation for deep kernel based GP

meta-learning for the first time
• Verified the results via extensive real-data experiments
• Shed some light on the coordination problem between the inner

loop and the outer loop that appeared in bi-level optimization
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Thanks!
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