NEO-KD: Knowledge-distillation-based Adversarial Training for Multi-exit Neural Network

Seokil Ham¹, Jungwuk Park¹, Dong-Jun Han^{2*}, Jaekyun Moon¹

Korea Advanced Institute of Science and Technology¹ **Purdue University²**

INTRODUCTION

Multi-exit Neural Network makes dynamic predictions in resource-constrained applications.

INTRODUCTION

- **Challenges in Robust Multi-exit Neural Network :**
- A multi-exit model is highly vulnerable to simple adverasrial attacks.
- Cause: Different submodels (exits) in multi-exit neural network have
 - high correlations by sharing parameters.
 - \rightarrow Strong adverversarial transferability across subdmodels.

Contribution

We propose NEO-KD, a knowledge-distillation-based adversarial training strategy for robust multi-exit neural networks.

Component 1: Neighbor Knowledge Distillation (NKD) Component 2: Exit-wise Orthogonal Knowledge Distillation (EOKD)

BACKGROUND

- Adversarial Training for Multi-exit Neural Network
- Triple Wins_[1]: Adversarial training strategy by generating adversarial examples
 - targeting a specific exit or multiple exits.

Average Attack

Single Attack

$$x_{avg}^{adv} = \underset{x' \in |x'-x|_{\infty} \leq \epsilon}{argmax} \left| \frac{1}{L} \sum_{j=1}^{L} \ell(f_{\theta_j}(x^{adv}), y) \right|$$

 $x_i^{adv} = \underset{x' \in |x'-x|_{\infty} \leq \epsilon}{argmax} \left| \ell(f_{\theta_i}(x^{adv}), y) \right|$

[1] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting accuracy, robustness and efficiency together by enabling input-adaptive inference. In International Conference on Learning Representations, 2020.

eural Network rating adversarial examples le exits.

$$\begin{aligned} x_{max}^{adv} \leftarrow x_{i^*}^{adv}, \\ where \ i^* = argmax \\ i \\ \begin{vmatrix} 1 \\ L \\ j=1 \end{vmatrix} \ell(f_{\theta_j}(x_i^{adv}), y) \end{vmatrix}$$

METHODOLOGY

- 1. Generate a teacher prediction by ensembling neighbor predictions of clean data and distills it to each prediction of adversarial examples.
- 2. Guide the output feature of adversarial data at each exit to mimic the output feature of clean data. **Effect:**
- 1. Provide a higher quality feature of original data to the corresponding exit.
- 2. Reduce adversarial transferability compared to the strategies that distill the same prediction to all exits.

$$\begin{split} \ell \left(f_{\theta_i}(x_j^{adv}), \frac{1}{2} \sum_{k=1}^2 f_{\theta_k}(x_j) \right), & i = 1 \\ \ell \left(f_{\theta_i}(x_j^{adv}), \frac{1}{2} \sum_{k=L-1}^L f_{\theta_k}(x_j) \right), & i = L \\ \ell \left(f_{\theta_i}(x_j^{adv}), \frac{1}{3} \sum_{k=i-1}^{i+1} f_{\theta_k}(x_j) \right), & otherwise \end{split}$$

METHODOLOGY: EOKD

Role:

INFORMA

CESSING SYST

- 1. Provide orthogonal soft labels to each exit, in an exit-wise manner, reducing adversarial transferability.
- 2. Discard some predictions to encourage that the non-maximal predictions of individual exits become mutually orthogonal.

Effect:

1. EOKD reduces the dependency among different submodels (exits), reducing the adversarial transferability to the multi-exit network.

 $EOKD_{i,j} = \ell\left(f_{\theta_i}(x_j^{adv}), O\left(f_{\theta_i}(x_j)\right)\right)$

METHODOLOGY: EOKD

Orthogonal Labeling Operation O(·)

Step 1. Randomly select non-ground-truth $\lfloor (C-1)/L \rfloor$ classes among C classes for each exit. Step 2. Unselected non-maximal labels becomes zero. Step 3. Normalize the likelihood to be summed to 1.0.

NEURAL INFORMATION **PROCESSING SYSTEMS**

$$\mathcal{L}_{NEO-KD} = \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{L} \left[\ell(f_{\theta_i}(x_j), y_j) + \ell(f_{\theta_i}(x_j^{ad\nu}), y_j)$$

$\gamma_i(\alpha * NKD_{i,j} + \beta * EOKD_{i,j})$

Experiment Setup

		Backbone	Dataset
		Small CNN	MNIST
		3-exit MSDNet	CIFAR10
		7-exit MSDNet	CIFAR100
		5-exit MSDNet	Tiny-Imagel
		5-exit MSDNet	ImageNet
Training	PG Max-av PG Avera	D-based D-based D-based age Attack	Test

- Net

PGD-based

Max-average Attack

PGD-based

Average Attack

RESULT: Anytime Prediction Setup

Dataset	Average Adversarial Test Accuracy	Max-average Attack	Average Attack	Dataset	Average Adversarial Test Accuracy	Max-average Attack	Average Attack	
MNIST	Adv. w/o Distill (ICLR 2020)	94.15%	92.75%		Adv. w/o Distill (ICLR 2020)	27.12%	18.13%	
	SKD (ICCV 2019)	94.36% (+0.21%)	92.82% (+0.07%)		SKD (ICCV 2019)	24.26% (-2.86%)	18.06% (-0.07%)	
	ARD (AAAI 2020)	93.97% (-0.18%)	92.82% (+0.07%)		ARD (AAAI 2020)	27.95% (+0.83%)	18.73% (+0.60%)	
	LW (Neural Networks 2022)	92.12% (-2.03%)	91.95% (-0.56%)	CIFAR100	LW (Neural Networks 2022)	19.91% (-7.21%)	14.42% (-3.71%)	
	NEO-KD (ours)	94.49% (+0.34%)	93.50% (+0.75%)		NEO-KD (ours)	28.96% (+1.84%)	22.88% (+4.75%)	
CIFAR10	Adv. w/o Distill (ICLR 2020)	45.91%	40.04%			(+1.0470)	(+4.7 3 70)	
	SKD (ICCV 2019)	44.69% (-1.22%)	39.71% (-0.33%)		Adv. w/o Distill (ICLR 2020)	30.45%	25.58%	
	ARD (AAAI 2020)	47.39% (+1.48%)	41.63% (+1.59%)		SKD (ICCV 2019)	28.43% (-2.02%)	23.57% (-2.01%)	
	LW (Neural Networks 2022)	35.87% (-10.04%)	30.62% (-9.42%)	ImageNet	ARD (AAAI 2020)	30.89% (+0.44%)	24.71% (-0.87%)	
	NEO-KD (ours)	48.30% (+2.39%)	44.20% (+4.16%)		NEO-KD (ours)	32.37% (+1.92%)	29.98% (+4.40%)	

RESULT: Budgeted Prediction Setup

RESULT: Budgeted Prediction Setup

CIFAR-100

RESULT: Budgeted Prediction Setup

RESULT: Adversarial Transferability

Adversarial Transferability: the attack success rate of adversarial single attack.

[Adv. w/o Distill]								[SKD]						[NEO-KD]									
Exit 7	16.38	15.01	15.89	17.63	21.01	35.59	80.03	Exit 7	18.92	18.49	20.36	22.50	25.35	52.70	81.18	Exit 7	13.57	12.83	12.80	13.63	16.61	30.43	66.37
Exit 6	19.86	18.37	19.81	22.53	27.71	76.84	41.66	Exit 6	24.51	25.64	28.16	31.84	36.40	75.41	63.31	Exit 6	17.66	16.83	17.27	18.98	23.01	59.20	35.67
Exit 5	23.27	23.43	26.81	29.48	75.40	28.26	28.15	Exit 5	33.21	34.21	38.87	43.72	68.91	43.36	41.63	Exit 5	21.02	19.83	21.27	24.14	57.13	23.37	22.32
Exit 4	27.30	27.52	32.40	73.32	30.35	24.63	23.38	Exit 4	37.24	38.46	44.49	69.32	44.56	37.77	36.85	Exit 4	25.66	24.44	28.11	54.76	24.58	19.72	19.48
Exit 3	30.33	31.04	73.87	30.52	26.29	21.01	21.36	Exit 3	38.49	41.15	71.50	41.78	36.73	32.08	31.40	Exit 3	26.95	27.45	58.90	25.24	18.46	15.14	15.48
Exit 2	33.73	79.43	25.10	21.53	18.28	15.15	14.88	Exit 2	43.55	76.42	36.37	30.56	26.36	24.11	24.15	Exit 2	35.34	62.46	24.30	17.85	13.82	11.61	12.41
Exit 1	81.55	29.40	21.23	17.77	14.96	12.59	12.89	Exit 1	79.38	38.22	29.08	24.39	20.94	19.78	19.52	Exit 1	66.68	31.06	20.19	15.37	11.61	9.41	10.12
	Exit 1	Exit 2	Exit 3	Exit 4	Exit 5	Exit 6	Exit 7		Exit 1	Exit 2	Exit 3	Exit 4	Exit 5	Exit 6	Exit 7		Exit 1	Exit 2	Exit 3	Exit 4	Exit 5	Exit 6	Exit 7

Avg. w/o Diag: 23.68% Avg. w/o Diag: 33.36%

[NEO-KD] Avg. w/o Diag: 20.12%

CONCLUSION

- Multi-exit neural network makes flexible predictions
 - in resource-constraint environments.
- However, multi-exit network is challenging to be robust because of high correlation across different exits from sharing parameters.
- We propose a knowledge-distillation-based adversarial training strategy for robust multi-exit networks, NEO-KD.
 - \rightarrow Correctly guiding the predictions of clean/adversarial data at each exit.
 - \rightarrow Reduce the adversarial transferability in the multi-exit neural network.

THANK YOU

