
On kernel-based statistical learning in the mean field limit

NeurIPS 2023

Christian Fiedler1, Michael Herty2, Sebastian Trimpe3
1,3Institute for Data Science in Mechanical Engineering (DSME)
fiedler@dsme.rwth-aachen.de, trimpe@dsme.rwth-aachen.de
2Institute for Geometry and Practical Mathematics (IGPM)
herty@igpm.rwth-aachen.de

RWTH Aachen University

Version/Date: November 14, 2023

1 On kernel-based statistical learning in the mean field limit | Fiedler, Herty, Trimpe | NeurIPS 2023

mailto:fiedler@dsme.rwth-aachen.de
mailto:trimpe@dsme.rwth-aachen.de
mailto:herty@igpm.rwth-aachen.de


Motivation: Multiagent Systems (MAS)

Sources: Top left Wiki Commons, top right Wiki Commons, lower left U.S. Fish and Wildlife Service, lower right DSME RWTH Aachen
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Motivation: Learning state-dependent features of MAS

Consider a system of M ∈ N+ agents or particles

I ~x [M] ∈ XM pointwise-in-time state of system,
(
~x [M]

)
m

state of agent m

I State-dependent feature of system with state-to-feature mapping fM : XM → R
I Goal: Learn fM from data (~x

[M]
1 , y

[M]
1 ), . . . , (~x

[M]
N , y

[M]
N ), assuming

y
[M]
n = fM(~x

[M]
n ) + ηn

 Standard supervised learning problem (regression)

I Most kernel methods lead to estimate of the form

f̂M =
N∑

n=1

α
[M]
n kM(·, ~x [M]

n ),

where kM : XM × XM → R is the kernel
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Microscopic to mesoscopic

Mean field limit

XM 3 ~x ≡ 1

M

M∑
m=1

δxm ∈ P(X )
M→∞−−−−→ µ ∈ P(X )
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Mean field limit of functions

Definition

Sequence gM : XM → R, M ∈ N+, has mean field limit (MFL) g : P(X )→ R,

denoted by gM
P1−→ g , if

lim
M→∞

sup
~x∈XM

|gM(~x)− g(µ̂[~x ])| = 0,

where µ̂[~x ] = 1
M

∑M
m=1 δxm is the empiricial measure with atoms x1, . . . , xM .

I Reasonable assumption: fM
P1−→ f , where MFL f : P(X )→ R is state-to-feature

map on mesoscopic level
I Learning on mesoscopic level: Data now (µ1, y1), . . . , (µN , yN), where

yn = f (µn) + ηn
I In this situation, kernel methods need kernel k : P(X )× P(X )→ R
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Questions

Central question How are the learning problems on the microscopic and mesoscopic
level related?

1. Mean field limit of kernels kM : XM × XM → R? Mean field limit RKHS?

2. Mean field limit in representer theorem?

3. Mean field limit of statistical learning problems? Convergence of risks and
(regularized) Empirical Risk Minimizers?
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Previous work: Mean field limit of kernels

Definition

kM : XM × XM → R, M ∈ N+, kernels on XM have mean field limit

k : P(X )× P(X )→ R, denoted by kM
P1−→ k , if

lim
M→∞

sup
~x ,~x ′∈XM

|kM(~x , ~x ′)− k(µ̂[~x ], µ̂[~x ′])| = 0,

Theorem (informal, cf. F., Herty, Rom, Segala, Trimpe ’23)

If (kM)M is a sequence of permutation-invariant, uniformly bounded, and uniformly
Lipschitz-continuous (w.r.t. the Monge-Kantorowich metric) kernels on XM , where X
is a compact metric space, then there exists a subsequence that has a mean field limit
k , which is again a kernel.
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Mean field limit of RKHSs

Theorem (informal, Thm 2.3 in the
paper)

k mean field limit kernel of (kM)M , HM

and Hk the associated RKHSs.

I Every RKHS function f ∈ Hk arises as
a mean field limit of functions
fM ∈ HM .

I Every uniformly norm-bounded
sequence fM ∈ HM has a mean field
limit f that is in Hk and shares the
same norm bound.

kM
M →∞

k

HM Hk

MFL of kM

M →∞

MFL of fM ∈ HM

RKHS Hk is the mean field limit of the RKHSs HM
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Representer theorem in the mean field limit

Theorem (informal, Thm 3.3 in the paper)

Assume µ̂[~x
[M]
n ]→ µn for M →∞, n = 1, . . . ,N, let L : RN → R≥0 be continuous and

strictly convex, and λ > 0. For each M ∈ N+, the problem

min
f ∈HM

L(f (~x
[M]
1 ), . . . , f (~x

[M]
N )) + λ‖f ‖M , (1)

has a unique solution f ∗M =
∑N

n=1 α
[M]
n kM(·, ~x [M]

n ) ∈ HM ,

min
f ∈Hk

L(f (µ1), . . . , f (µN)) + λ‖f ‖k . (2)

has a unique solution f ∗ =
∑N

n=1 αnk(·, µn) ∈ Hk , and f ∗M
P1−→ f ∗ for M →∞.
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Regularized empirical risk minimization in the mean field limit

Proposition (informal)

Loss functions `M : XM × Y × R→ R≥0, M ∈ N+, have a mean field limit
` : P(X )× Y × R→ R≥0 under reasonable assumptions.

Definition

Data sets D[M]
N = ((~x

[M]
1 , y

[M]
1 ), . . . , (~x

[M]
1 , y

[M]
1 )) have mean field limit

DN = ((µ1, y1), . . . , (µN , yN)) if µ̂[~x
[M]
n ]→ µn and y

[M]
n → yn for M →∞, for all

n = 1, . . . ,N.

Proposition (informal, Prop. 4.3 in the paper)

Regularized empirical risk minimizer for data DN is mean field limit of the regularized

empirical risk minimizers for data D[M]
N , and the (empirical) risks also converge.
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Regularized risk minimization in the mean field limit

Definition

Probability distributions PM on XM × Y , M ∈ N+, converge in mean field to
probability distribution P on P(X )× Y if∫

XM×Y
f (µ̂[~x ], y)dP [M](~x , y)→

∫
P(X )×Y

f (µ, y)dP(µ, y).

for all continuous and bounded f : P(X )→ R.

Proposition (informal, Prop. 4.5 in the paper)

If P is the mean field limit of PM , and ` the mean field limit of `M , then the
regularized risk minimizer w.r.t. P and ` is the mean field limit of the regularized risk
minimizers w.r.t. PM and `M .
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Summary

Results

I Mean field limit of RKHSs (increasing number of inputs of kernels)

I Representer theorem in mean field limit

I Mean field limit for statistical learning theory setup

I Convergence of regularized (empirical) risks and mean field convergence of
minimizers

Relevance

I New large-scale limit in theory of machine learning

I Theoretical foundation for new learning tasks on multiagent systems
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