

On kernel-based statistical learning in the mean field limit

NeurIPS 2023

 $\frac{\text{Christian Fiedler}^{1}, \text{ Michael Herty}^{2}, \text{ Sebastian Trimpe}^{3}}{^{1,3}\text{Institute for Data Science in Mechanical Engineering (DSME)}} \\ \text{fiedler@dsme.rwth-aachen.de, trimpe@dsme.rwth-aachen.de} \\ ^{2}\text{Institute for Geometry and Practical Mathematics (IGPM)} \\ \text{herty@igpm.rwth-aachen.de} \\ \end{array}$

RWTH Aachen University

Version/Date: November 14, 2023

Motivation: Multiagent Systems (MAS)

2

Sources: Top left Wiki Commons, top right Wiki Commons, lower left U.S. Fish and Wildlife Service, lower right DSME RWTH Aachen

On kernel-based statistical learning in the mean field limit | Fiedler, Herty, Trimpe | NeurIPS 2023

Motivation: Learning state-dependent features of MAS

Consider a system of $M \in \mathbb{N}_+$ agents or particles

- ▶ $\vec{x}^{[M]} \in X^M$ pointwise-in-time state of system, $(\vec{x}^{[M]})_m$ state of agent m
- ▶ State-dependent feature of system with state-to-feature mapping $f_M : X^M \to \mathbb{R}$
- ► Goal: Learn f_M from data $(\vec{x}_1^{[M]}, y_1^{[M]}), \dots, (\vec{x}_N^{[M]}, y_N^{[M]})$, assuming $y_n^{[M]} = f_M(\vec{x}_n^{[M]}) + \eta_n$ \rightsquigarrow Standard supervised learning problem (regression)
- Most kernel methods lead to estimate of the form

$$\hat{f}_M = \sum_{n=1}^N \alpha_n^{[M]} k_M(\cdot, \vec{x}_n^{[M]}),$$

where $k_M : X^M \times X^M \to \mathbb{R}$ is the kernel

3

Microscopic to mesoscopic

4

Mean field limit

$$X^M
i \vec{x} \equiv rac{1}{M} \sum_{m=1}^M \delta_{x_m} \in \mathcal{P}(X) \quad \xrightarrow{M o \infty} \quad \mu \in \mathcal{P}(X)$$

Mean field limit of functions

Definition

5

Sequence $g_M : X^M \to \mathbb{R}$, $M \in \mathbb{N}_+$, has mean field limit (MFL) $g : \mathcal{P}(X) \to \mathbb{R}$, denoted by $g_M \xrightarrow{\mathcal{P}_1} g$, if

$$\lim_{M\to\infty}\sup_{\vec{x}\in X^M}|g_M(\vec{x})-g(\hat{\mu}[\vec{x}])|=0,$$

where $\hat{\mu}[\vec{x}] = \frac{1}{M} \sum_{m=1}^{M} \delta_{x_m}$ is the empiricial measure with atoms x_1, \ldots, x_M .

- ▶ Reasonable assumption: $f_M \xrightarrow{\mathcal{P}_1} f$, where MFL $f : \mathcal{P}(X) \to \mathbb{R}$ is state-to-feature map on mesoscopic level
- Learning on mesoscopic level: Data now (μ₁, y₁),..., (μ_N, y_N), where y_n = f(μ_n) + η_n
- ▶ In this situation, kernel methods need kernel $k : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}$

6

Central question How are the learning problems on the microscopic and mesoscopic level related?

- 1. Mean field limit of kernels $k_M : X^M \times X^M \to \mathbb{R}$? Mean field limit RKHS?
- 2. Mean field limit in representer theorem?
- 3. Mean field limit of statistical learning problems? Convergence of risks and (regularized) Empirical Risk Minimizers?

Previous work: Mean field limit of kernels

Definition

7

 $k_M: X^M \times X^M \to \mathbb{R}, M \in \mathbb{N}_+$, kernels on X^M have mean field limit $k: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}$, denoted by $k_M \xrightarrow{\mathcal{P}_1} k$, if

$$\lim_{M\to\infty}\sup_{\vec{x},\vec{x}'\in X^M}|k_M(\vec{x},\vec{x}')-k(\hat{\mu}[\vec{x}],\hat{\mu}[\vec{x}'])|=0,$$

Theorem (informal, cf. F., Herty, Rom, Segala, Trimpe '23)

If $(k_M)_M$ is a sequence of permutation-invariant, uniformly bounded, and uniformly Lipschitz-continuous (w.r.t. the Monge-Kantorowich metric) kernels on X^M , where X is a compact metric space, then there exists a subsequence that has a mean field limit k, which is again a kernel.

Mean field limit of RKHSs

Theorem (informal, Thm 2.3 in the paper)

k mean field limit kernel of $(k_M)_M$, H_M and H_k the associated RKHSs.

- ► Every RKHS function f ∈ H_k arises as a mean field limit of functions f_M ∈ H_M.
- ► Every uniformly norm-bounded sequence f_M ∈ H_M has a mean field limit f that is in H_k and shares the same norm bound.

8

RKHS H_k is the mean field limit of the RKHSs H_M

Representer theorem in the mean field limit

Theorem (informal, Thm 3.3 in the paper)

Assume $\hat{\mu}[\vec{x}_n^{[M]}] \to \mu_n$ for $M \to \infty$, n = 1, ..., N, let $L : \mathbb{R}^N \to \mathbb{R}_{\geq 0}$ be continuous and strictly convex, and $\lambda > 0$. For each $M \in \mathbb{N}_+$, the problem

$$\min_{f \in H_M} L(f(\vec{x}_1^{[M]}), \dots, f(\vec{x}_N^{[M]})) + \lambda \|f\|_M,$$
(1)

has a unique solution $f_M^* = \sum_{n=1}^N \alpha_n^{[M]} k_M(\cdot, \vec{x}_n^{[M]}) \in H_M$,

$$\min_{f\in H_k} L(f(\mu_1),\ldots,f(\mu_N)) + \lambda \|f\|_k.$$
(2)

has a unique solution $f^* = \sum_{n=1}^N \alpha_n k(\cdot, \mu_n) \in H_k$, and $f^*_M \xrightarrow{\mathcal{P}_1} f^*$ for $M \to \infty$.

On kernel-based statistical learning in the mean field limit | Fiedler, Herty, Trimpe | NeurIPS 2023

9

Regularized empirical risk minimization in the mean field limit

Proposition (informal)

Loss functions $\ell_M : X^M \times Y \times \mathbb{R} \to \mathbb{R}_{\geq 0}$, $M \in \mathbb{N}_+$, have a mean field limit $\ell : \mathcal{P}(X) \times Y \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ under reasonable assumptions.

Definition

10

Data sets $\mathcal{D}_N^{[M]} = ((\vec{x}_1^{[M]}, y_1^{[M]}), \dots, (\vec{x}_1^{[M]}, y_1^{[M]}))$ have mean field limit $\mathcal{D}_N = ((\mu_1, y_1), \dots, (\mu_N, y_N))$ if $\hat{\mu}[\vec{x}_n^{[M]}] \to \mu_n$ and $y_n^{[M]} \to y_n$ for $M \to \infty$, for all $n = 1, \dots, N$.

Proposition (informal, Prop. 4.3 in the paper)

Regularized empirical risk minimizer for data \mathcal{D}_N is mean field limit of the regularized empirical risk minimizers for data $\mathcal{D}_N^{[M]}$, and the (empirical) risks also converge.

Regularized risk minimization in the mean field limit

Definition

11

Probability distributions P_M on $X^M \times Y$, $M \in \mathbb{N}_+$, converge in mean field to probability distribution P on $\mathcal{P}(X) \times Y$ if

$$\int_{X^{M}\times Y} f(\hat{\mu}[\vec{x}], y) \mathrm{d}P^{[M]}(\vec{x}, y) \to \int_{\mathcal{P}(X)\times Y} f(\mu, y) \mathrm{d}P(\mu, y).$$

for all continuous and bounded $f : \mathcal{P}(X) \to \mathbb{R}$.

Proposition (informal, Prop. 4.5 in the paper)

If P is the mean field limit of P_M , and ℓ the mean field limit of ℓ_M , then the regularized risk minimizer w.r.t. P and ℓ is the mean field limit of the regularized risk minimizers w.r.t. P_M and ℓ_M .

Results

- Mean field limit of RKHSs (increasing number of inputs of kernels)
- Representer theorem in mean field limit
- Mean field limit for statistical learning theory setup
- Convergence of regularized (empirical) risks and mean field convergence of minimizers

Relevance

12

- New large-scale limit in theory of machine learning
- Theoretical foundation for new learning tasks on multiagent systems

