

Continuous Parametric Optical Flow

Jianqin Luo*, Zhexiong Wan*, Yuxin Mao, Bo Li, Yuchao Dai⁺

Northwestern Polytechnical University & Shaanxi Key Laboratory of Information Acquisition and Processing

Github Page – CPFlow https://github.com/LuoRadisher/CPFlow

Project Page – CPFlow https://npucvr.github.io/CPFlow

Introduction

Representation of Fine-grained Motion

• Optical Flow:

✓ **Dense & Short-term** motion displacements between the specific frame pairs.

• Point Tracker (Tracking-Any-Point):

✓ Sparse & Long-term motion trajectories during the whole frame sequences.

** Above description is for one-step inference result with practicle resource

Dense & Short-term Optical Flow [1]

Sparse & Long-term point tracker [2]

[1] Teed Z, Deng J. Raft: Recurrent all-pairs field transforms for optical flow[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020: 402-419.

[2] Harley A W, Fang Z, Fragkiadaki K. Particle video revisited: Tracking through occlusions using point trajectories[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 59-75.

Motivation

Temporal Continuity of Real Motion

Discrete Flow

- **Description: discrete** point correspondence.
- Concept Limitation: frame-to-frame mapping.
- Implement Limitation: implicit prediction.

Continuous Parametric Flow

- ✓ **Description: continuous** point trajectories.
- ✓ Concept Expansion: time-to-time mapping.
- Implement Optimization: parametric constraints with implicit regression.

Control Points

Motivation

Efficiency of Spatial-Temporal Aggegation

Expectation: dense & long-term motion estimation for a video.

- **Optical Flow:** step-to-step chain needs additional inference time.
- **Point Tracker:** single-point centric model needs large memory for image-scale inference.
- ✓ CPFlow: spatially dense & temporally continuous motion prediction for one-step inference.

	Dense?	Long-term?
Optical Flow	~	*
Point Tracker	*	~
CPFlow	~	×

Method

Overall Architechture

- □ Continuous Feature Generation: implicitly construct spatio-temporal representation binded with candidate moment by Neural ODE with ConvGRU.
- □ Continuous Parametric Representation: explicitly describe continuous flow trajectory by cubic B-splines with flexible control points regressed by our model.
- □ Multi-time Correlation & Iterative Update : effectively connect implicit features with explicit parameter regression.

Method

Parametric Model

Goal: select a powerful & flexible curve to describe continuous flow.

Comparision:

- a. Polynomial Curve: fitting limitation, inflexible, hard to pass through occlusion
- b. Bezier Curve: flexible control point, global optimization
- c. B-splines Curve: flexible control points, local optimization
- □ Solution: Clamp Cubic B-spline

Knots List: Repeated Knots adjust the shape of curve

Method

Optimization Framework

- key: insert spatial-temporal feature representation for specific moment
- □ Solution: Neural ODE & ConvGRU
 - Neural ODE: temporal continuity in feature space а.
 - ConvGRU: aggregation for spatial-temporal information b.

$$L = \sum_{i=1}^{S} \gamma^{S-i} \frac{1}{N_{gt}} \sum_{j=1}^{N_{gt}} ||F(t_j^{sup}) - D_{gt}(t_j^{sup})||_1$$

Step 1: Initial State Update

$$\overline{h}(t_j^{src}) = ODE(f_{\theta}, \{t_j^{src}\}, \overline{h}(t_{j-1}^{src}))$$
Step 2: Information Aggregation

$$\widetilde{h}(t_j^{src}) = ConvGRU(\overline{h}(t_j^{src}), \chi_{t_j^{src}})$$
Step 3: Final State Output

$$\{h(t_j^{tgt})\}^L = ODE(f_{\phi}, \{t_j^{tgt}\}^L, \hat{h}(0))$$

Dataset & Evaluation

□ Synthetic Dataset

D Evaluation Perspective

- ✓ Long-term & Dense (>80%) GT Annotations
- ✓ Diverse Temporal Scales.

Metric & Baseline

□ Metrics

✓ Accuracy
$$ADE = \frac{1}{N_v} * \frac{1}{T} \sum_{\mathbf{x}} \sum_{\mathbf{x}} ||F(t_k) - F^*(t_k)||_2$$

✓ Smoothness
$$TRMSE = \frac{1}{N_v} \sum_{\mathbf{x}} \sqrt{\frac{1}{T} \sum_{a=0}^{T-1} ||F(t_a) - D_{gt}(t_a)||^2}$$

□ Baselines

- **RAFT**: optical flow estimator with sub-pixel performance.
- **PIPs**: recent point-centric tracker with powerful generalization.
- **Process:** Discrete Mapping + Link
 - **RAFT** : chain adjacent flow with **bililnear interpolation** & **explicit motion assumption**.
 - PIPs : generate all mapping at sampling moments for batch of pixels & explicit motion assumption.

Comparision Results on Synthetic Dataset

□ Kubric Synthetic Dataset

Method	Metric	Mark	Query-Stride set				Query-First set				
			8f	10f	16f	24f	8 f	10f	16f	24f	
RAFT	ADE_vis	S NS	8.18 7.13	7.91 6.08	$\begin{array}{c} 13.00\\ 10.21 \end{array}$	$\begin{array}{c} 14.43\\11.31\end{array}$	5.68 4.94	7.18 5.42	11.12 8.47	17.56 13.91	
	ADE_Occ	S NS	9.62 8.79	12.16 9.37	27.73 21.98	$\begin{array}{c} 24.95\\ 18.06 \end{array}$	6.26 5.60	8.60 6.43	$14.77 \\ 10.72$	24.86 19.04	
	ADE_All	S NS	8.32 7.39	8.17 6.37	$14.93 \\ 12.37$	$\begin{array}{c} 16.37\\ 13.06 \end{array}$	5.73 5.00	7.27 5.51	11.44 8.75	18.49 14.72	
	TRMSE	-	8.50	7.82	15.81	16.66	5.86	6.77	10.35	16.85	
PIPs	ADE_vis	S NS	4.66 3.97	4.39 3.40	8.77 6.92	$\begin{array}{c} 10.13\\ 7.92 \end{array}$	3.12 2.97	4.12 3.26	7.81 5.97	14,23 10.27	
	ADE_Occ	S NS	7.13 6.43	7.71 5.93	21.54 16.83	19.97 15.16	4.85 4.23	$\begin{array}{c} 7.28 \\ 4.03 \end{array}$	12.89 9.31	22.34 16.35	
	ADE_All	S NS	4.74 4.13	4.58 3.61	10.41 8.68	12.09 9.86	3.76 3.25	4.93 3.76	8.35 6.42	14.68 11.76	
	TRMSE	-	4.93	4.49	11.27	13.02	3.90	4.72	7.76	13.70	
ODE-6spline (Ours)	ADE_vis	S NS	3.81 3.38	3.88 3.11	8.08 6.47	7.88 6.29	2.88 2.51	3.72 2.86	6.26 4.83	12.08 9.73	
	ADE_Occ	S NS	6.24 5.65	8.09 6.35	22.72 18.21	19.93 15.09	4.70 4.17	6.86 5.04	11.34 8.24	19.61 15.19	
	ADE_All	S NS	4.00 3.60	4.13 3.37	9.89 8.54	10.31 8.66	2.96 2.61	3.88 3.02	6.71 5.26	13.05 10.64	
	TRMSE	-	4.26	4.17	11.38	12.03	3.12	3.78	6.42	12.38	

S, NS are respectively referred to as the sampling and non-sampling moments.

(a) Ground Truth	(b) RAFT	(c) PIPs	(d) Ours

- **Query-Sride:** sample from spatial-temporal space **Query-First:** sample from the first frame
- \succ **Dense Prediction**: improve the accuracy & smoothness for large-scale parallel inference.
- **Favourable Performance:** outperform baselines thoroughly including moments/visibility/timescales.

Comparision Results on Synthetic Dataset

□ Real-World Dataset

Method	Metric	Mark	Vid-DAVIS [8]				Vid-Kinetics [8]				
			20f	24f	28f	32f	36f	48f	128f	250f	
RAFT	ADE_Vis	S NS	16.84 12.42	19.72 14.71	19.42 15.87	23.37 18.53	15.97 12.98	$\begin{array}{c} 19.00\\ 16.36 \end{array}$	30.19 24.99	35.93 30.63	
	ADE_Occ	S NS	$\begin{array}{c} 18.58\\ 14.67\end{array}$	$\begin{array}{c} 23.82\\ 18.56 \end{array}$	27.91 20.19	31.35 22.53	19.23 16.07	21.89 18.85	31.98 26.11	39.76 33.10	
	ADE_All	S NS	17.99 14.23	$\begin{array}{c} 20.25\\ 16.07 \end{array}$	22.97 17.91	25.65 19.68	$\begin{array}{c} 16.74\\ 14.90 \end{array}$	20.70 17.73	31.47 25.16	37.81 31.49	
	TRMSE	-	16.91	18.95	21.28	23.81	16.62	24.51	27.50	34.23	
PIPs	ADE_Vis	S NS	$12.96 \\ 10.39$	15.47 11.39	$\begin{array}{c} 15.62\\ 12.60\end{array}$	$ 18.73 \\ 15.27 $	$\begin{array}{c} 12.71\\ 10.49 \end{array}$	$\begin{array}{c} 16.48\\ 13.30\end{array}$	28.34 22.31	38.56 31.08	
	ADE_Occ	S NS	18.84 14,42	26.67 20.66	30.60 20.88	32.21 23.26	17.59 15.42	21.08 18.56	31.82 25.34	42.31 35.41	
	ADE_All	S NS	15.18 11.94	$\begin{array}{c} 17.98\\14.38\end{array}$	$\begin{array}{c} 22.06\\ 16.62 \end{array}$	23.31 18.49	$13.70 \\ 12.73$	17.79 13.72	31.76 24.67	40.59 33.90	
	TRMSE	-	14.80	17.38	20.66	22.79	12.51	15.82	28.60	37.25	
ODE-6spline (Ours)	ADE_Vis	S NS	11.37 9.32	16.80 12.21	$\begin{array}{c} 16.16\\ 13.37\end{array}$	18.99 15.22	12.09 9.99	$\begin{array}{c} 15.02\\ 12.34 \end{array}$	25.25 21.35	31.18 27.13	
	ADE_Occ	S NS	15.75 12.24	20.67 15.91	$\begin{array}{c} 26.71\\ 18.00 \end{array}$	27.99 20.55	17.76 15.17	$\begin{array}{c} 20.50\\ 18.00 \end{array}$	29.79 24.98	$37.12 \\ 32.00$	
	ADE_all	S NS	13.48 10.80	16.91 13.31	19.81 15.08	21.16 16.68	12.48 10.47	15.82 13.10	27.68 22.80	34.42 29.65	
	TRMSE	-	12.96	15.76	18.12	20.27	12.06	14.91	25.43	32.77	

- Long-term Tracking: keep the motion trend to suppress drift for long-term tracking.
- Generalization Beyond Training Range: stable tracking with 10% improvement than baselines for ultra-distance(250f) scene.

Conclusion

An Exploration of Continuous Pixel Motion Estimation

- A novel motion representation based on continuous parametric optical flow fusing with implicit feature optimization and explicit parametric modelling.
 - 1) propose **continuous parametric optical flow** to provide spatially dense & temporally continuous pixel displacements simultaneously.
 - 2) implicitly and explicitly fusion of continuous information by ODE-ConvGRU & parametric curves
 - 3) a new simulated dataset & evaluation framework
- Our work shows that CPFlow is suitable to achieve long-term & continuous tracking for large scale pixels built with flexible parametric modelling & implicit feature aggregation.
- Limitation
 - 1) parametric model is easy to fail in complex motion scenes
 - 2) feature aggregation only rely on part of moments.

THANK YOU FOR WATCHING

Project Page – CPFlow https://npucvr.github.io/CPFlow

Github Page – CPFlow https://github.com/LuoRadisher/CPFlow