

Discovering Intrinsic Spatial-Temporal Logic Rules to Explain Human Actions

Chengzhi Cao, Chao Yang, Ruimao Zhang, Shuang Li

Introduction

There has been a great interest and business value in unveiling the human logic from the observational movements.

Pedestrian trajectory prediction

Offensive Strategies for Basketball Players

Introduction

Spatial-Temporal Predicate In our paper, we extend the above static predicates to spatial-temporal predicates, which include spatial-temporal *property* predicates and spatial-temporal *relation* predicates.

Specifically, the spatial-temporal property predicates are defined as

 $X(v): \mathcal{C} \times \cdots \times \mathcal{C} \times \mathcal{T} \times \mathcal{S} \mapsto \{0, 1\}.$

We will consider spatial-temporal logic rules where the body part contain spatial-temporal predicates as relation constraints. For example, a sensible rule will look like

$$f: Y_{\text{TurnAround}}(c, t, s) \leftarrow X_{\text{PickUpKey}}(c, t, s) \bigwedge_{R_{\text{InFront}}((c', t, s'), (c, t, s))} \bigwedge_{R_{\text{Behind}}((c'', t, s''), (c, t, s))}$$

where $c \in C_{\text{person}}$, $c' \in C_{\text{block}}$, and $c'' \in C_{\text{key}}$. In general, the *spatial-temporal logic rule* in our paper is defined as a logical connectives of predicates, including property predicates and spatial-temporal relation predicates,

$$f: Y(v) \leftarrow \bigwedge_{X_{\text{property}} \in \mathcal{X}_f} X_{\text{property}}(v') \bigwedge_{R_{\text{spatial-temporal}} \in \mathcal{R}_f} R_{\text{spatial-temporal}}(v'', v)$$
(1)

where Y(v) is the *head predicate* evaluated at the entity-time-location triplet v, \mathcal{X}_f is the set of property predicates defined in rule f, and \mathcal{R}_f denotes the set of spatial-temporal relation predicates defined in rule f.

Given the rule set $F\kappa$, we model the probability of the event κ as a log-linear function of the features, i.e.,

$$p(\kappa|v, \mathcal{H}_t) \propto \exp\left(\sum_{f \in \mathcal{F}_\kappa} w_f \cdot \phi_f(\kappa|v, \mathcal{H}_t)\right),\tag{3}$$

where $w = [wf]f \in F \ge 0$ are the learnable weight parameters associated with each rule. All the model parameters can be learned by maximizing the likelihood, which can be computed using the above Eq. (3)

$$\max_{\theta, w} \mathcal{O}(\theta, w) = \mathbb{E}_{(\kappa, v, \mathcal{H}_t)}[\log \mathbb{E}_{p_{\theta}}[p_w(\kappa | v, \mathcal{H}_t)]].$$
(4)

Our goal is to maximize the likelihood of the observed human action events $\{\kappa^{(i)}\}_{i=1,...,n}$. Using the chain rule, we have

$$\log p_w(\{\kappa^{(i)}\}_{i=1,\dots,n}) = \sum_{i=1}^n \log p_w(\kappa^{(i)} \mid v^{(i)}, \mathcal{H}_{t^{(i-1)}}).$$
(5)

We deploy Transformer-based framework to model the rule generator p_{θ} . We define the distribution of a set of rules as follows:

$$p_{\theta}(z \mid v, \mathcal{H}_t) = \Psi(z \mid N, \operatorname{Trans}_{\theta}(v, \mathcal{H}_t)), \tag{8}$$

Figure 1: Illustration of feature construction using a simple logic formula with temporal relation predicate $(t_1 < t_2), f : Y \leftarrow$ $A \wedge B \wedge C \wedge (A \text{ Before } B)$. The rule defines the template to gather combinations of the body predicate history events. Here predicate A has 2 events and predicate B has 1 event, the temporal relation constraint would lead to valid combinations (also called "paths"). This type of feature construction can be extended to spatial-temporal cases, where we count the valid paths as the feature.

Introduction

A

Framework

Logic Reasoning

Result

Table 2: Quantitative results (ADE_{20}/FDE_{20}) , and accuracy) of trajectory prediction in NBA dataset. The bold/underlined font represent the best/second best result.

Times	Y-Net	MID	NSP-SFM	Social-SSL	Social Implicit	Social VAE	ABC+	Ours
1.0s	0.38/0.48	0.45/0.59	0.41/0.52	0.48/0.61	0.45/0.53	0.49/0.66	0.45/0.56	0.30/0.40
2.0s	0.63/0.93	0.76/1.06	0.67/0.94	0.76/1.08	0.72/0.96	0.77/1.11	0.75/0.98	0.58/0.88
3.0s	0.94/1.34	1.06/1.40	0.98/1.35	1.06/1.43	1.00/1.39	1.11/1.46	1.03/1.41	0.87/1.31
4.0s	1.17/1.61	1.32/1.74	1.18/1.63	1.35/1.78	1.19/1.66	1.37/1.79	1.23/1.67	1.13/1.60
Acc.	0.69	0.65	0.70	0.68	0.69	0.64	0.65	0.73

Figure 4: Estimated distributions for each player's intention in cartesian space.

Visualization

Player A Rule (1): Left(B,A) \land Right(C,A) \land Front(D,A) \rightarrow Pass(A,B) Explanation:

- Player A is carrying the ball
- Player A is defended by player C and player D
- The partner B is on the left of player A
- Player A passes the ball to player B

Player B Rule (2): Left(E,B) \land Right(D,B) \rightarrow Go_Front(B) Explanation:

- Player E and player F is moving to the player B
- Player B is defended by player E on left side
- Player B is defended by player D on right side
- Player B goes front and carry the ball

Player B Rule (3): Left(E,B) \land Right(G,B) \land Front(F,B) \rightarrow Shoot(B) Explanation:

- Player B is defended by player E on left side
- Player B is defended by player G on right side
- Player B is defended by player F on front side
- Player B shoots at the basket

basketball player
basketball

Thanks for Listening!