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Dense OOD Detection

• Goal: Generate pixel-wise identification of unknown objects.

• Previous Assumption: Training and testing data share a similar domain.

• Motivation: Domain shift widely exists in real-world situations. 

Example images from RoadAnomaly
and RoadObstable datasets.
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E.g. various road, 
weather and lighting 
conditions.



Dense OOD Detection with Domain Shift

• Existing OOD Detection Methods: Domain shift highly impacts their 
performance.

+ Domain shift
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Dense OOD Detection with Domain Shift

• Existing OOD Detection Methods: Domain shift highly impacts their 
performance.

• + Test-Time Adaptation (TTA): Applying existing techniques faces challenges.

92 87 
82 

57 

82 81 

PEBAL  + TBN  + Tent

A
U

P
R

C
 (

%
)

FS Static FS Static with Domain Shift

A. Impair OOD detection performance 
on images from seen domains. 

• E.g. Transductive BN.

B. Indiscriminately reduce uncertainty of 
unknown classes.

• E.g. Entropy Minimization.



Main Idea

• A dual-level OOD detection framework:

1. Distinguish whether domain shift exists by leveraging global low-level features;

2. Identify pixels with semantic shift by utilizing dense high-level feature maps. 

• Selectively adapt the model to unseen domains as well as enhance 

model’s capacity in detecting novel classes. 



Method Overview
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Selective Batch Normalization (SBN)

1. Estimate the probability of domain-shift by considering image-level stat.
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Selective Batch Normalization (SBN)

1. Estimate the probability of domain-shift by considering image-level stat.

2. Update BN statistics according to the probability.
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Anomaly-aware Self-Training (AST)
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Anomaly-aware Self-Training (AST)
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• Anomaly-aware output representation:
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Experiments on simulated FS Static -C Dataset
• Constructed by randomly adding smog, color shifting, and Gaussian blur.

FS Static -C dataset (gray rows) Original FS Static dataset (white rows)

Our method remains more stable in the face of domain shifts.



Results on offline OOD detection benchmarks

Our method consistently improve upon previous models, especially 
within high-domain-shift dataset. 



Results on offline OOD detection benchmarks

Our method effectively mitigates the impact of domain-shift and 
encourage the confidence of the model predictions.



Results on online OOD detection benchmarks
• SMIYC Benchmark

• Fishyscapes online Benchmark

Our method achieves consistent 
performance improvements.



Thanks for listening !

CodePaper

For more information please refer to our paper and code.
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