



#### **ATTA: Anomaly-aware Test-Time Adaptation** for Out-of-Distribution Detection in Segmentation

Zhitong Gao, Shipeng Yan, Xuming He

ShanghaiTech University



### **Dense OOD Detection**

• Goal: Generate pixel-wise identification of unknown objects.



## **Dense OOD Detection**

- Goal: Generate pixel-wise identification of unknown objects.
- Previous Assumption: Training and testing data share a similar domain.





## **Dense OOD Detection**

- Goal: Generate pixel-wise identification of unknown objects.
- Previous Assumption: Training and testing data share a similar domain.
- Motivation: Domain shift widely exists in real-world situations.



### Dense OOD Detection with Domain Shift

• Existing OOD Detection Methods: Domain shift highly impacts their performance.





## Dense OOD Detection with Domain Shift

- Existing OOD Detection Methods: Domain shift highly impacts their performance.
- + Test-Time Adaptation (TTA): Applying existing techniques faces challenges.

A. Impair OOD detection performance on images from seen domains.

• E.g. Transductive BN.

nce B. Indiscriminately reduce uncertainty of unknown classes.

E.g. Entropy Minimization.





## Main Idea

- A dual-level OOD detection framework:
  - 1. Distinguish whether domain shift exists by leveraging global low-level features;
  - 2. Identify pixels with semantic shift by utilizing dense high-level feature maps.
- Selectively adapt the model to unseen domains as well as enhance

model's capacity in detecting novel classes.



## Method Overview





## Selective Batch Normalization (SBN)

1. Estimate the **probability of domain-shift** by considering <u>image-level</u> stat.



## Selective Batch Normalization (SBN)

- 1. Estimate the probability of domain-shift by considering image-level stat.
- 2. Update **BN statistics** according to the probability.



## Anomaly-aware Self-Training (AST)

• Overall Loss Function:  $\mathcal{L}_{\theta}(x) = -\sum_{i} \sum_{c=1}^{C+1} w_c \hat{Y}_{c,i} \log(\hat{Y}_{c,i})$ 



10

## Anomaly-aware Self-Training (AST)

- Overall Loss Function:  $\mathcal{L}_{\theta}(x) = -\sum_{i} \sum_{j=1}^{\infty} w_c \hat{Y}_{c,i} \log(\hat{Y}_{c,i})$
- Anomaly-aware output representation:  $\hat{Y}_{c,i} = F_{c,i}(1 P_{\theta}(Z_i^o = 1|x)) [c \in \mathcal{Y}] + P_{\theta}(Z_i^o = 1|x) [c = C + 1]$



## Experiments on simulated FS Static -C Dataset

• Constructed by randomly adding smog, color shifting, and Gaussian blur.

|                       | MSP [17] | Entropy [24] | Max logit [15] | Energy [30] | Meta-OOD [4] | PEBAL [44] | + Ours | + TBN [36] | + Tent [46] |
|-----------------------|----------|--------------|----------------|-------------|--------------|------------|--------|------------|-------------|
| AUC ↑                 | 92.36    | 93.14        | 95.66          | 95.90       | 97.56        | 99.61      | 99.66  | 99.25      | 99.04       |
|                       | 70.85    | 71.23        | 74.13          | 74.02       | 78.34        | 67.63      | 99.21  | 98.96      | 98.93       |
| $\mathrm{AP}\uparrow$ | 19.09    | 26.77        | 38.64          | 41.68       | 72.91        | 92.08      | 93.61  | 86.51      | 82.38       |
|                       | 10.52    | 14.32        | 23.60          | 22.36       | 52.31        | 57.02      | 87.14  | 81.97      | 81.42       |
| $FPR_{95}\downarrow$  | 23.99    | 23.31        | 18.26          | 17.78       | 13.57        | 1.52       | 1.15   | 2.33       | 4.09        |
|                       | 100.0    | 100.00       | 89.94          | 89.94       | 100.0        | 97.17      | 2.94   | 4.26       | 4.43        |

FS Static -C dataset (gray rows)

Original FS Static dataset (white rows)

Our method remains more stable in the face of domain shifts.



#### Results on offline OOD detection benchmarks

| Mathada          | OoD                   | Road Anomaly |              | FS LostAndFound      |                |              | FS Static                   |                |              |                             |
|------------------|-----------------------|--------------|--------------|----------------------|----------------|--------------|-----------------------------|----------------|--------------|-----------------------------|
| Methous          | Data                  | AUC ↑        | $AP\uparrow$ | $FPR_{95}\downarrow$ | AUC $\uparrow$ | $AP\uparrow$ | $\text{FPR}_{95}\downarrow$ | AUC $\uparrow$ | $AP\uparrow$ | $\text{FPR}_{95}\downarrow$ |
| MSP [17]         | ×                     | 67.53        | 15.72        | 71.38                | 89.29          | 4.59         | 40.59                       | 92.36          | 19.09        | 23.99                       |
| Entropy [24]     | ×                     | 68.80        | 16.97        | 71.10                | 90.82          | 10.36        | 40.34                       | 93.14          | 26.77        | 23.31                       |
| Mahalanobis [26] | ×                     | 62.85        | 14.37        | 81.09                | 96.75          | 56.57        | 11.24                       | 96.76          | 27.37        | 11.7                        |
| Meta-OoD [4]     |                       | -            | -            | -                    | 93.06          | 41.31        | 37.69                       | 97.56          | 72.91        | 13.57                       |
| Synboost [10]    | <ul> <li>✓</li> </ul> | 81.91        | 38.21        | 64.75                | 96.21          | 60.58        | 31.02                       | 95.87          | 66.44        | 25.59                       |
| DenseHybrid [14] | ✓                     | -            | -            | -                    | 99.01          | 69.79        | 5.09                        | 99.07          | 76.23        | 4.17                        |
| Max Logit [15]   | ×                     | 72.78        | 18.98        | 70.48                | 93.41          | 14.59        | 42.21                       | 95.66          | 38.64        | 18.26                       |
| + ATTA (Ours)    | -                     | 76.60        | 23.96        | 63.49                | 93.53          | 17.39        | 40.69                       | 95.48          | 41.23        | 20.89                       |
| Energy [30]      | ×                     | 73.35        | 19.54        | 70.17                | 93.72          | 16.05        | 41.78                       | 95.90          | 41.68        | 17.78                       |
| + ATTA (Ours)    | -                     | 77.41        | 25.27        | 62.57                | 93.30          | 17.47        | 43.32                       | 96.0           | 41.84        | 17.63                       |
| PEBAL [44]       |                       | 87.63        | 45.10        | 44.58                | 98.96          | 58.81        | 4.76                        | 99.61          | 92.08        | 1.52                        |
| + ATTA (Ours)    | -                     | 92.11        | 59.05        | 33.59                | 99.05          | 65.58        | 4.48                        | 99.66          | 93.61        | 1.15                        |

Our method consistently improve upon previous models, especially within high-domain-shift dataset.

### Results on offline OOD detection benchmarks



Our method effectively mitigates the impact of domain-shift and encourage the confidence of the model predictions.

# Results on online OOD detection benchmarks

• SMIYC Benchmark

| RoadAnomaly21  | AP↑         | $\operatorname{FPR}_{95}\downarrow$ | sIoU↑       | PPV↑        | F1↑         |
|----------------|-------------|-------------------------------------|-------------|-------------|-------------|
| PEBAL [44]     | 49.1        | 40.8                                | 38.9        | 27.2        | 14.5        |
| + ATTA (Ours)  | <b>67.0</b> | <b>31.6</b>                         | <b>44.6</b> | <b>29.6</b> | <b>20.6</b> |
| RoadObstacle21 | AP↑         | $\operatorname{FPR}_{95}\downarrow$ | sIoU↑       | PPV↑        | F1↑         |
| PEBAL [44]     | 5.0         | 12.7                                | 29.9        | 7.6         | 5.5         |
| + ATTA (Ours)  | <b>76.5</b> | <b>2.8</b>                          | <b>43.9</b> | <b>37.7</b> | <b>36.6</b> |

#### • Fishyscapes online Benchmark

| Online FS Lost & Found | AP↑          | $\operatorname{FPR}_{95}\downarrow$ |
|------------------------|--------------|-------------------------------------|
| PEBAL [44]             | 44.17        | 7.58                                |
| + ATTA (Ours)          | <b>55.94</b> | <b>4.66</b>                         |
| Online FS Static       | AP↑          | $\operatorname{FPR}_{95}\downarrow$ |
| PEBAL [44]             | 92.38        | 1.73                                |
| + ATTA (Ours)          | <b>94.68</b> | <b>0.68</b>                         |

Our method achieves consistent performance improvements.



# Thanks for listening !

For more information please refer to our paper and code.





