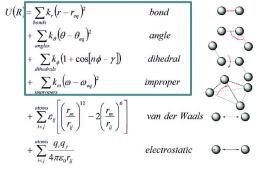




## QuinNet: Efficiently Incorporating Quintuple Interactions into Geometric Deep Learning Force Fields


Zun Wang, Guoqing Liu, Yichi Zhou, Tong Wang, Bin Shao Microsoft Research Al4Science



|   | Introduction |
|---|--------------|
|   | Method       |
|   | Results      |
| 8 | Conclusions  |

### Preliminary

### **Empirical force field**

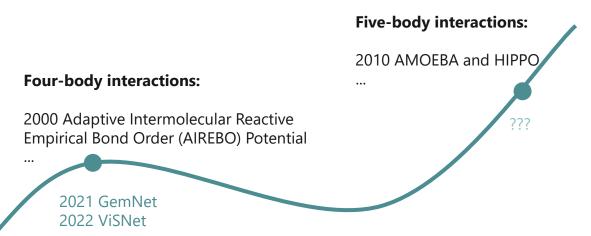


#### **Three-body interactions:**

1988 Tersoff potential 1992 Modified embedded atom method (MEAM) 2005 Angular dependent potential (ADP)

#### **Two-body interactions:**

• • •


1924 Lennard-Jones potential1929 Morse potential1938 Buckingham potential

2018 SchNet

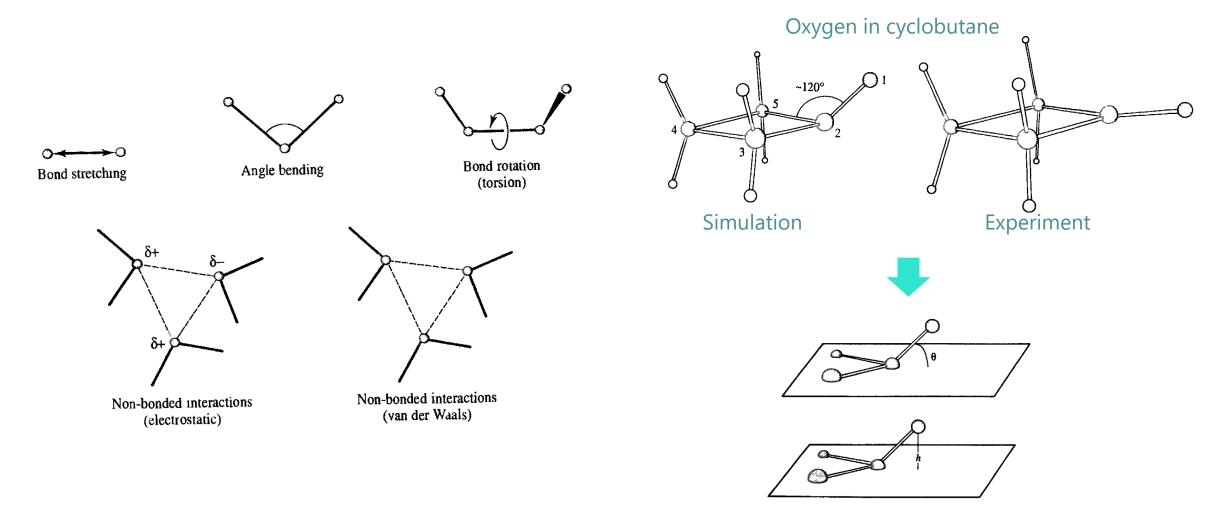
...

2020 DimeNet 2020 DimeNet++ 2021 PaiNN

...



#### **Group representation:**


2022 NequlP 2022 Allegro 2022 MACE

...

### **Machine Learning Force Field**

Schütt K, et al. NeurIPS, 2017, 30. Gasteiger J, et al. ICLR. 2019. Gasteiger J, et al. arXiv:2011.14115, 2020. Schütt K, et al. ICML, 2021: 9377-9388. Gasteiger J, et al. NeurIPS, 2021, 34: 6790-6802. Wang Y, et al. arXiv:2210.16518, 2022. Batzner S, et al. Nature communications, 2022, 13(1): 2453. Musaelian A, et al. Nature Communications, 2023, 14(1): 579. Batatia I, et al. NeurIPS, 2022, 35: 11423-11436.

# **Empirical force fields**



Improper torsion



**D** Selection of appropriate physical quantities

Calculating such a physical quantity increases the computational complexity as the order of interactions increases

## Methods

☑ Selection of appropriate physical quantities ≻ Topology of many-body interactions

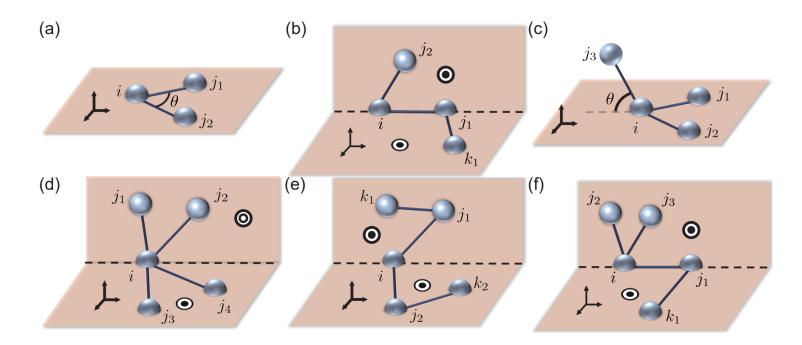



Figure 2: A schematic diagram that describes the topology of (a) three-body interaction (angles), (b) four-body interaction (torsions), (c) four-body interaction (improper torsions), and (d-f) five-body interactions. The marker  $\odot$  on a plane represents the normal vector of this plane.

## Methods

### ☑ Calculating physical quantities efficiently ≻ Architecture of QuinNet

#### **Three-body interactions**

$$\left\|\sum_{j\in\mathcal{N}_i}\hat{r}_{ij}\right\|^2 = \sum_{j,k\in\mathcal{N}_i} \langle \hat{r}_{ij}, \hat{r}_{ij} \rangle = \sum_{j,k\in\mathcal{N}_i} \cos \alpha_{jik},$$

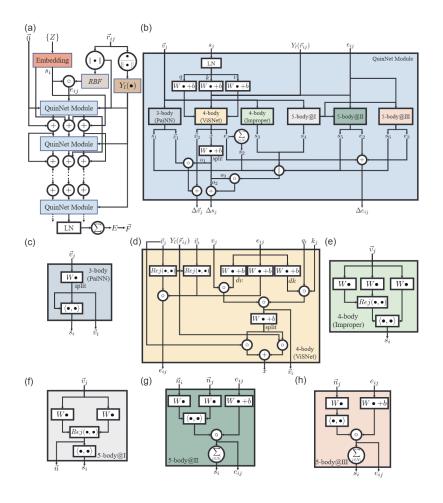
**Four-body interactions (torsion)** 

$$\left(\sum_{k_1 \in \mathcal{N}_i} \hat{r}_{ik_1} \times \hat{r}_{ij}\right) \cdot \left(\sum_{k_2 \in \mathcal{N}_j} \hat{r}_{jk_2} \times (-\hat{r}_{ij})\right) = \sum_{\substack{k_1 \in \mathcal{N}_i, \\ k_2 \in \mathcal{N}_j}} \langle \vec{n}_{ijk_1}, \vec{n}_{ijk_2} \rangle$$

Four-body interactions (improper torsion)

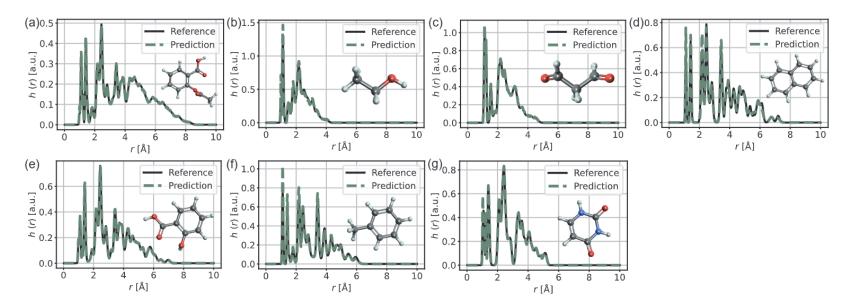
$$\sum_{j \in \mathcal{N}_i} \hat{r}_{ij} \cdot \left[ \left( \sum_{j \in \mathcal{N}_i} \alpha_j \hat{r}_{ij} \right) \times \left( \sum_{j \in \mathcal{N}_i} \beta_j \hat{r}_{ij} \right) \right] = \sum_{j_1, j_2, j_3 \in \mathcal{N}_i} \gamma_{ij_1 j_2} \langle \vec{r}_{ij_3}, \vec{n}_{ij_1 j_2} \rangle$$

**Five-body interactions@I** 


$$\left(\sum_{j\in\mathcal{N}_i}\alpha_j\hat{r}_{ij}\right)\times\left(\sum_{j\in\mathcal{N}_i}\beta_j\hat{r}_{ij}\right)\right\|^2 = \sum_{j_1,j_2,j_3,j_4\in\mathcal{N}_i}\gamma_{ij_1j_2j_3j_4}\langle\vec{n}_{ij_1j_2},\vec{n}_{ij_3j_4}\rangle$$

Five-body interactions@II

$$\left\| \left( \sum_{k \in \mathcal{N}_{j_1}} \alpha_k \hat{r}_{kj_1} \times \sum_{k \in \mathcal{N}_{j_1}} \beta_k \hat{r}_{kj_1} \right) \right|_{j_1 \in \mathcal{N}_i} \right\|^2 = \left. \sum_{\substack{k_1 \in \mathcal{N}_{j_1}, \\ k_2 \in \mathcal{N}_{j_2}}} \gamma_{j_1 j_2 k_1 k_2} \langle \vec{n}_{ij_1 k_1}, \vec{n}_{ij_2 k_2} \rangle \right|_{j_1, j_2 \in \mathcal{N}_i}$$


Five-body interactions@III

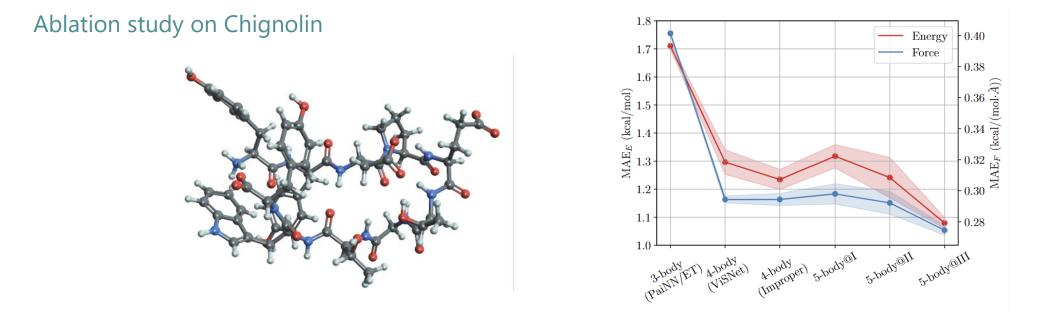
$$\left(\sum_{j\in\mathcal{N}_i}\alpha_j\hat{r}_{ij}\times\sum_{j\in\mathcal{N}_i}\beta_j\hat{r}_{ij}\right)\cdot\left(\sum_{k\in\mathcal{N}_j}\alpha_k\hat{r}_{jk}\times\sum_{k\in\mathcal{N}_j}\beta_k\hat{r}_{jk}\right)\right|_{j\in\mathcal{N}_i}=\left.\sum_{\substack{j1,j2\in\mathcal{N}_i,\\k_1,k_2\in\mathcal{N}_j}}\gamma_{ij_1j_2k_1k_2}\langle\vec{n}_{ij_1j_2},\vec{n}_{jk_1k_2}\rangle\right|_{j\in\mathcal{N}_i}$$



### Benchmark on MD17 dataset

|                |                 | SchNet [11, 12] | DimeNet 🖽]     | PaiNN [15]     | SpookyNet [45] | ET [ <del>16</del> ]  | GemNet [17] | NequIP ( <i>l</i> =3) [7] | SO3KRATES 4    | ViSNet [20]           | QuinNet               |
|----------------|-----------------|-----------------|----------------|----------------|----------------|-----------------------|-------------|---------------------------|----------------|-----------------------|-----------------------|
| Aspirin        | Energy<br>Force | 0.37<br>1.35    | 0.204<br>0.499 | 0.167<br>0.338 | 0.151<br>0.258 | 0.123<br>0.253        | 0.217       | 0.131<br>0.184            | 0.139<br>0.236 | <b>0.116</b><br>0.155 | 0.119<br><b>0.145</b> |
| Ethanol        | Energy<br>Force | 0.08<br>0.39    | 0.064<br>0.230 | 0.064<br>0.224 | 0.052<br>0.094 | 0.052<br>0.109        | 0.085       | 0.051<br>0.071            | 0.052<br>0.096 | 0.051<br><b>0.060</b> | 0.050<br>0.060        |
| Malonaldehyde  | Energy<br>Force | 0.13<br>0.66    | 0.104<br>0.383 | 0.091<br>0.319 | 0.079<br>0.167 | 0.077<br>0.169        | 0.155       | 0.076<br>0.129            | 0.077<br>0.147 | <b>0.075</b> 0.100    | 0.078<br><b>0.097</b> |
| Naphthalene    | Energy<br>Force | 0.16<br>0.58    | 0.122<br>0.215 | 0.116<br>0.077 | 0.116<br>0.089 | <b>0.085</b><br>0.061 | -<br>0.051  | 0.113<br>0.039            | 0.115<br>0.074 | 0.085<br>0.039        | 0.101<br><b>0.039</b> |
| Salicylic acid | Energy<br>Force | 0.20<br>0.85    | 0.134<br>0.374 | 0.116<br>0.195 | 0.114<br>0.180 | 0.093<br>0.129        | 0.125       | 0.106<br>0.090            | 0.016<br>0.145 | <b>0.092</b><br>0.084 | 0.101<br><b>0.080</b> |
| Toluene        | Energy<br>Force | 0.12<br>0.57    | 0.102<br>0.216 | 0.095<br>0.094 | 0.094<br>0.087 | <b>0.074</b><br>0.067 | - 0.060     | 0.092<br>0.046            | 0.095<br>0.073 | 0.074<br>0.039        | 0.080<br><b>0.039</b> |
| Uracil         | Energy<br>Force | 0.14<br>0.56    | 0.115<br>0.301 | 0.106<br>0.139 | 0.105<br>0.119 | <b>0.095</b><br>0.095 | -<br>0.097  | 0.104<br>0.076            | 0.103<br>0.111 | 0.095<br>0.062        | 0.096<br><b>0.062</b> |




### Benchmark on rMD17 dataset

|                    |        | UNiTE [50] | GemNet (T/Q) [17] | NequIP $(l=3)$ [7] | MACE [36] | Allegro [35] | BOTNet | ViSNet [20] | QuinNet |
|--------------------|--------|------------|-------------------|--------------------|-----------|--------------|--------|-------------|---------|
| Aspirin            | Energy | 0.055      | -                 | 0.0530             | 0.0507    | 0.0530       | 0.0530 | 0.0445      | 0.0486  |
| Азриш              | Force  | 0.175      | 0.2191            | 0.1891             | 0.1522    | 0.1684       | 0.1960 | 0.1520      | 0.1429  |
| Azobenzene         | Energy | 0.025      | -                 | 0.0161             | 0.0277    | 0.0277       | 0.0161 | 0.0156      | 0.0394  |
| Reobenzene         | Force  | 0.097      | -                 | 0.0669             | 0.0692    | 0.0600       | 0.0761 | 0.0585      | 0.0513  |
| Benzene            | Energy | 0.002      | -                 | 0.0009             | 0.0092    | 0.0069       | 0.0007 | 0.0007      | 0.0096  |
| Delizene           | Force  | 0.017      | 0.0115            | 0.0069             | 0.0069    | 0.0046       | 0.0069 | 0.0056      | 0.0047  |
| Ethanol            | Energy | 0.014      | -                 | 0.0092             | 0.0032    | 0.0092       | 0.0092 | 0.0078      | 0.0096  |
| Ethanol            | Force  | 0.085      | 0.083             | 0.0646             | 0.0484    | 0.0484       | 0.0738 | 0.0522      | 0.0516  |
| Malonaldehyde      | Energy | 0.025      | -                 | 0.0184             | 0.0185    | 0.0138       | 0.0185 | 0.0132      | 0.0168  |
| Waldhaldeliyde     | Force  | 0.152      | 0.1522            | 0.01176            | 0.0946    | 0.0830       | 0.1338 | 0.0893      | 0.0875  |
| Naphthalene        | Energy | 0.011      | -                 | 0.0046             | 0.1153    | 0.0046       | 0.0046 | 0.0057      | 0.0174  |
| Naphthalene        | Force  | 0.060      | 0.0438            | 0.0300             | 0.0369    | 0.0208       | 0.0415 | 0.0291      | 0.0242  |
| Davis a starra a l | Energy | 0.044      | -                 | 0.0323             | 0.0300    | 0.0346       | 0.0300 | 0.0258      | 0.0362  |
| Paracetamol        | Force  | 0.164      | -                 | 0.1361             | 0.1107    | 0.1130       | 0.1338 | 0.1029      | 0.0979  |
| Salicylic acid     | Energy | 0.017      | -                 | 0.0161             | 0.0208    | 0.0208       | 0.0185 | 0.0161      | 0.033   |
| Sancyne aciu       | Force  | 0.088      | 0.1222            | 0.0922             | 0.0715    | 0.0669       | 0.0992 | 0.0795      | 0.0771  |
| Taluara            | Energy | 0.010      | -                 | 0.0069             | 0.0115    | 0.0092       | 0.0069 | 0.0059      | 0.0139  |
| Toluene            | Force  | 0.058      | 0.0507            | 0.0369             | 0.0350    | 0.0415       | 0.0438 | 0.0264      | 0.0244  |
| Unacil             | Energy | 0.013      | -                 | 0.0092             | 0.0115    | 0.0138       | 0.0092 | 0.0069      | 0.0149  |
| Uracil             | Force  | 0.088      | 0.0876            | 0.0669             | 0.0484    | 0.0415       | 0.0738 | 0.0495      | 0.0487  |

QuinNet model shows comparable accuracy with the state-of-the-art models in **small** molecular datasets.

### Benchmark on MD22 dataset

|                            | # Train/Val |                 | sGDML [51]     | ViSNet-LSRM 52          | ViSNet [20, 52]         | MACE (3Å) 53       | MACE (6Å) 53     | MACE (5Å) 53            | QuinNet                 |
|----------------------------|-------------|-----------------|----------------|-------------------------|-------------------------|--------------------|------------------|-------------------------|-------------------------|
| Ac-Ala3-NHMe               | 5500/500    | Energy<br>Force | 0.0093<br>0.79 | <b>0.0016</b><br>0.0942 | 0.0019<br>0.0972        | 0.0140<br>0.1753   | 0.0080<br>0.3920 | 0.0015<br>0.0876        | 0.0020<br><b>0.0681</b> |
| DHA (docosahexaenoic acid) | 7500/500    | Energy<br>Force | 0.023<br>0.75  | <b>0.0016</b><br>0.0598 | 0.0027<br>0.0668        | 0.0103<br>0.1430   | 0.0092<br>0.5419 | 0.0024<br>0.0646        | 0.0021<br><b>0.0515</b> |
| Stachyose                  | 7500/500    | Energy<br>Force | 0.046<br>0.68  | <b>0.0012</b><br>0.0767 | 0.0015<br>0.0869        | $0.0058 \\ 0.1568$ | 0.0082<br>0.6226 | $0.0014 \\ 0.0876$      | 0.0026<br><b>0.0543</b> |
| AT-AT                      | 2500/500    | Energy<br>Force | 0.012<br>0.69  | <b>0.0013</b><br>0.0781 | 0.0028<br>0.1070        | 0.0208<br>0.3067   | 0.0036<br>0.3436 | 0.0018<br>0.0992        | 0.0024<br><b>0.0687</b> |
| AT-AT-CG-CG                | 1500/500    | Energy<br>Force | 0.012<br>0.70  | 0.0010<br>0.1064        | 0.0017<br>0.1563        | 0.0139<br>0.3759   | 0.0038<br>0.4635 | 0.0013<br>0.1153        | 0.0032<br>0.1273        |
| Buckyball catcher          | 550/50      | Energy<br>Force | 0.0079<br>0.68 | <b>0.0029</b><br>0.1026 | 0.0030<br>0.1335        | 0.0110<br>0.3021   | 0.0039<br>0.5120 | 0.0033<br><b>0.0853</b> | 0.0038<br>0.1091        |
| Double-walled nanotube     | 750/50      | Energy<br>Force | 0.0108<br>0.52 | 0.0049<br>0.3391        | <b>0.0028</b><br>0.3959 | 0.0048<br>0.4128   | 0.0053<br>0.9132 | 0.0045<br>0.2767        | 0.0049<br><b>0.2473</b> |



|           |                 | LSRM | 3-body (ET)                                                               | 4-body (ViSNet)                                                           | 4-body (improper)                                                         | 5-body@I                                                                  | 5-body@II                                                                 | 5-body (QuinNet)                                                            | QuinNet (6 Layer) |
|-----------|-----------------|------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|
| Chignolin | Energy<br>Force |      | $\begin{array}{c} 1.711 {\pm}~ 0.012 \\ 0.4014 {\pm}~ 0.0015 \end{array}$ | $\begin{array}{c} 1.296 {\pm}~ 0.044 \\ 0.2944 {\pm}~ 0.0022 \end{array}$ | $\begin{array}{c} 1.234 {\pm}~ 0.036 \\ 0.2944 {\pm}~ 0.0039 \end{array}$ | $\begin{array}{c} 1.317 {\pm}~ 0.042 \\ 0.2980 {\pm}~ 0.0066 \end{array}$ | $\begin{array}{c} 1.241 {\pm}~ 0.072 \\ 0.2922 {\pm}~ 0.0073 \end{array}$ | $\begin{array}{c} 1.079 {\pm} \ 0.019 \\ 0.2747 {\pm} \ 0.0030 \end{array}$ | 1.036<br>0.2665   |

QuinNet accurately models these interactions and achieves higher accuracy in energy and force prediction compared to other models on the **larger** molecular systems.

## Conclusions

- In this work, we propose the QuinNet architecture, which efficiently incorporates many-body interactions up to **whole five-body** in graph neural networks for molecular dynamics simulations.
- Our experiments on several public datasets, including MD17, revised MD17, MD22, and Chignolin, demonstrate that QuinNet achieves high accuracy without significantly increasing computational complexity.
- Notably, our ablation study on Chignolin highlights **the significance of five-body interactions** in accurately modeling complex bio-molecular systems.

# Thank You!