

Sample-Efficient and Safe Deep Reinforcement Learning via Reset Deep Ensemble Agents

Woojun Kim*1Yongjae Shin*2Jongeui Park2Youngchul Sung2

¹Carnegie Mellon University ²KAIST

Preliminaries

Primacy Bias

- DNN-based function approximators overfit early experiences, limiting their adaptability to later experiences [1].
- Primacy Bias is getting worse as we increase the replay ratio, which is the number of updates per time-step.

[1] Nikishin et al., "The primacy bias in deep reinforcement learning," ICML 2022

Preliminaries

Primacy Bias

- DNN-based function approximators overfit early experiences, limiting their adaptability to later experiences [1].
- Primacy Bias is getting worse as we increase the replay ratio, which is the number of updates per time-step.

Reset RL Agent

- (Nikishin et al 2022) proposed a simple reset method, which periodically resets a deep RL agent while preserving the replay buffer.
- Reset improves sample efficiency by allowing RL agents to increase the replay ratio.
- However, reset causes performance collapse after reset.
- Performance collapse leads to safety concerns, which restrict the use of the reset method in practical RL applications.

[1] Nikishin et al., "The primacy bias in deep reinforcement learning," ICML 2022

NeurIPS 2023

Our Approach: RDE

- Goal: preventing performance collapse and improving sample efficiency.
- RDE constructs (1) N-ensemble agent and (2) sequentially reset each ensemble agent and (3) adaptively composite N-ensemble agents into a single agent

Figure 3. Overall diagram of RDE

Our Approach: RDE

- Goal: preventing performance collapse and improving sample efficiency.
- RDE constructs (1) N-ensemble agent and (2) sequentially reset each ensemble agent and (3) adaptively composite N-ensemble agents into a single agent

1. N-ensemble Agents

- Construct **N-ensemble agents** with different initial parameters.
- This diversity enhances robustness and efficiency.

2. Sequential Reset

- We sequentially reset parameter $\theta_1, \theta_2, \dots, \theta_N$.
- Involving N-1 non-reset agents at each reset, prevents performance collapse.
- As we reset all ensemble agents, our method can still tackle the issue of primacy bias effectively.

Sample-Efficient and Safe Deep Reinforcement Learning via Reset Deep Ensemble Agents NeurIPS 2023

Our Approach: RDE

- Goal: preventing performance collapse and improving sam efficiency.
- RDE constructs (1) N-ensemble agent and (2) sequentially reset each ensemble agent and (3) adaptively composite N-ensemble agents into a single agent

3. Adaptive Composition

- Recently resetted agent can still induce performance collapse.
- Propose adaptive integration of N-ensemble agents into a single agent.
- Assign a higher selection probability to the action with a higher action value, thereby reducing the chance that the most recently reset policy will be selected.
- The probabilities are calculated as $p_{select} = [p_1, p_2, \dots, p_N] = \operatorname{softmax} \left[\dot{\hat{Q}}(s, a_1) / \alpha, \hat{Q}(s, a_2) / \alpha, \dots, \hat{Q}(s, a_N) / \alpha \right]$ where $\alpha = \beta / \max(\hat{Q}(s, a_1), \hat{Q}(s, a_2), \dots, \hat{Q}(s, a_N))$ and \hat{Q} is the action-value function of the earliest-reset agent among the ensemble.

Sample-Efficient and Safe Deep Reinforcement Learning via Reset Deep Ensemble Agents NeurIPS 2023

Experiments

Environment / Base algorithm

- (Continuous) DeepMind Control Suite / SAC
- (Discrete) Minigrid, Atari 100k / DQN

Figure 4. IQM results of the considered algorithms

• RDE outperforms both baselines (base algorithm and vanilla reset(SR)).

 RDE prevents performance collapse and improves the final performance

Sample-Efficient and Safe Deep Reinforcement Learning via Reset Deep Ensemble Agents NeurIPS 2023

Our approach for Safe RL

- We apply our approach to safe RL, which aims to maximize reward while minimizing costs including safety constraint.
- Adaptive composition based reward and cost functions.
- The adapted probability is defined as $p_{select}^{safe} = \kappa p_{select} + (1 \kappa)p_{select}^c$, where κ is the mixing coefficient and p_{select}^c is given by:

$$p^c_{select} = [p^c_1, p^c_2, \cdots, p^c_N] = ext{softmax} \left[-\hat{C}(s, a_1) / lpha_c, -\hat{C}(s, a_2) / lpha_c, \cdots, -\hat{C}(s, a_N) / lpha_c
ight]$$

where C denote cost function and $\alpha_c = \beta / \max\{|\hat{C}(s, a_1)|, |\hat{C}(s, a_2)|, \cdots, |\hat{C}(s, a_N)|\}$.

Experiments: Safe RL

 RDE not only achieved superior test performance to the baselines but also reduced training safety cost.

Figure 6. Test return & Train cost on Safe RL

NeurIPS 2023

Thank You!