

Paxion: Patching Action Knowledge in Video-Language Foundation Models

NeurIPS2023 Spotlight

Zhenhailong Wang, Ansel Blume, Sha Li, Genglin Liu, Jaemin Cho, Zineng Tang, Mohit Bansal, Heng Ji

Background: Current VLMs struggle to understand concepts beyond nouns

Recent VLMs face challenges in understanding visual language concepts beyond object nouns (e.g., recognizing attributes, relations, states)

Background: How about actions?

The understanding of the cause and effect of actions in textual, visual, and temporal dimensions

Action Knowledge

ActionBench: Do SOTA VidLM really understand actions?

> Action Dynamics Benchmark (ActionBench) based on two VL datasets: SSv2, Ego4d

- Probing tasks: Action Antonym (AA), Video Reversal (VR)
- Baseline task: Object Replacement (OR)

ActionBench: Do SOTA VidLM really understand actions?

Evaluating SOTA VidLMs on ActionBench

Near random performance on Action Antonym (AA) and Video Reversal (VR)

Clear **biases towards object nouns** compared to actions

PAXION Framework Overview

> Patch \rightarrow Fuse

How can we patch action knowledge into existing VidLMs without compromising their general VL capabilities?

PAXION

Knowledge Patcher: Patching frozen VLMs with Action Knowledge

A light-weight **Perceiver-based module** attached to a frozen VidLM

Knowledge Patcher: Patching frozen VLMs with Action Knowledge

New training objects DVDM (VAC, ATM losses) to force the model to encode action dynamics

Video-Action Contrastive (VAC): encourages learning the alignment between the video and the action verbs

Action-Temporal Matching: encourages learning the correct

temporal ordering implied by the action text

Knowledge Patcher: Patching frozen VLMs with Action Knowledge

DVDM objectives significantly improves action understanding (near-random \Rightarrow ~80%)

Action Dynamics Benchmark (ActionBench) Results							
Backbone	Method [Patcher Training Loss]	Trainable Param#	AA (Ego4d)	VR (Ego4d)	AA (SSv2)	VR (SSv2)	Avg
InternVideo	Backbone KP-Transformer [VTC] KP-Perceiver [VTC] KP-Perceiver [VTC+ DVDM]	8.4M (1.8%) 4.2M (0.9%) 4.2M (0.9%)	58.8 68.2 66.5 90.1	46.2 62.8 63.6 75.5	51.8 65.5 69.8 90.7	48.3 60.6 71.0 87.4	51.3 64.3 67.7 85.9
Clip-ViP	Backbone KP-Transformer [VTC] KP-Perceiver [VTC] KP-Perceiver [VTC+ DVDM]	3.9M (2.6%) 2.4M (1.6%) 2.4M (1.6%)	49.3 61.9 61.9 89.3	55.0 53.4 54.6 56.9	70.2 72.2 71.5 89.3	53.6 54.3 48.8 66.0	57.0 60.5 59.2 75.4
Singularity	Backbone KP-Transformer [VTC] KP-Perceiver [VTC] KP-Perceiver [VTC+ DVDM]	3.9M (1.8%) 1.3M (0.6%) 1.3M (0.6%)	47.0 61.9 60.3 83.8	50.1 48.2 46.1 58.9	48.9 63.8 63.3 82.4	49.6 49.5 51.5 68.8	48.9 55.9 55.3 73.5
	Human		92.0	78.0	96.0	90.0	89.0

How can we patch action knowledge into existing VidLMs without compromising their general VL capabilities?

The KP representation is highly specialized in action understanding

A light-weight cross-attention module which fuses the learned Knowledge Patcher features with the frozen backbone features

Downstream Tasks

Downstream Task Results

PAXION with Knowledge Fuser outperforms/performs competitively with VTC-only baselines on both object-centric and action-centric tasks

	Video-Text Retrieval				Video-to-Action Retrieval			
Method [Patcher Training Loss]	SSv2-label				SSv2-template Temporal-SSv2			ral-SSv2
	$R1_{v2t}$	$R5_{v2t}$	$R1_{t2v}$	$R5_{t2v}$	R1	R5	R1	R5
InternVideo Backbone	18.8	39.9	19.9	40.0	5.6	15.9	11.2	35.8
KP-Transformer FT [VTC]	24.1	50.0	21.7	46.0	21.1	55.9	41.1	88.9
KP-Perceiver FT [VTC]	27.0	57.4	27.1	56.8	24.8	59.7	42.5	91.3
Side-Tuning [61] [VTC+DVDM]	30.9	59.2	26.6	53.1	22.2	55.1	50.2	90.9
PAXION [VTC+DVDM]	32.3	61.2	28.0	54.3	26.9	61.5	51.2	91.9

	NExT-QA						
Method [Patcher Training Loss]	Original				ATP-hard [7]		
	C	Т	D	all	C	Т	all
InternVideo Backbone	43.3	38.6	52.5	43.2	27.0	27.3	27.1
KP-Transformer FT [VTC]	46.1	45.0	61.3	48.1	32.5	33.6	33.0
KP-Perceiver FT [VTC]	46.0	46.0	58.9	48.0	30.1	31.6	30.7
Side-Tuning [60] [VTC+DVDM]	54.9	52.0	69.8	56.3	37.4	36.0	36.8
PAXION [VTC+DVDM]	56.0	53.0	68.5	57.0	38.8	38.1	38.5

Paxion helps more on T and C questions, and on ATP-hard where the temporal and action knowledge is emphasized

Qualitative Examples of PAXION

Video-to-Action Retrieval (Temporal-SSv2)

'Approaching something with your camera"

...

X 'Moving away from something with your camera"

Ranking Scores

Causal-Temporal VQA (NExT-QA)

Question:	✓ A. "raised his hand to take the camera"	16.
"what did the	X B. "bored"	18.
baby do after he	X C. "turn back to the toy"	28.
approached near	X D. "move his legs"	21.
the camera?"	X E. "suck his thumb"	15

Ranking Scores

<u>(21.7%)</u> (1)	0.4%
15.1%	0.4%
[15.1%] [1	0.4%)

Qualitative Examples of PAXION

Negation

Object identification

Remaining challenges

NExT-QA Failure Example							
Question	GT	Answer Candidates	Score Rank	Score Rank			
	\checkmark	A. "eight"	8.5% 5	17.3% 5			
"how mony goats can be	X	B. "one"	23.3% 3	17.5% (4)			
spotted?"	X	C. "two"	27.2% 1	20.2% 3			
	X	D. "three"	24.8% 2	24.3% 1			
	X	E. "four"	16.2% (4)	20.6% 2			
			VTC-Finetune	Paxion			

Counting

Paxion: Patching Action Knowledge in Video-Language Foundation Models

NeurIPS2023 Spotlight

Zhenhailong Wang, Ansel Blume, Sha Li, Genglin Liu, Jaemin Cho, Zineng Tang, Mohit Bansal, Heng Ji

