

BIOT: Biosignal Transformer for Cross-data Learning in the Wild

NeurIPS 2023, New Orleans, LA

Chaoqi Yang¹, M. Brandon Westover^{2,3}, Jimeng Sun¹

¹University of Illinois Urbana-Champaign

²Harvard Medical School ³Beth Israel Deaconess Medical Center

Motivation

Same contexts, different formats, how to combine them in model training?

> variable length, different sampling rates, different channels

Previously

<u>separate models</u> for training/test

Name: MGH sleep EEG Tasks: Sleep staging Duration: 30 seconds Rate: 500 Hz Channels: 16 channels

Name: Harvard seizure EEG Tasks: Seizure detection Duration: 10 seconds Rate: 250 Hz Channels: 8 channels

BIOT: A unified biosignal transformer encoder

We transform different biosignals into consistent sentence structures.

Fp2 🔤	(powerstal)	$\beta_{p_1 \cdots \cdots \cdots p_d} = \beta_{p_1 \cdots \cdots p_d}$
Fp1	p _{pp} , which and p	$\beta_{(p)=u^{n+1},u^{n})_{p}}$
01	?	have ?
0	1	2 3 4

BIOT: A unified biosignal transformer encoder

Sentence structure + Linear complexity transformer.

Biosignal Transformer (BIOT) Encoder

BIOT: A unified biosignal transformer encoder

The BIOT model can be used in various settings.

Experiments

Datasets: EEG, ECG, HAR

Settings: supervised learning, unsupervised pre-training and then finetuning.

Datasets	Type (subtype)	# Recordings	Rate	Channels	Duration	# Sample	Tasks
SHHS	EEG (sleep)	5,445	125Hz	C3-A2, C4-A1	30 seconds	5,093,522	Unsupervised pre-training
PREST	EEG (resting)	6,478	200Hz	16 montages	10 seconds	5,110,992	Unsupervised pre-training
Cardiology	ECG	21,264	500Hz	6 or 12 ECG leads	10 seconds	495,970	Unsupervised pre-training
CHB-MIT	EEG (resting)	686	256Hz	16 montages	10 seconds	326,993	Binary (seizure or not)
IIIC Seizure	EEG (resting)	2,702	200Hz	16 montages	10 seconds	165,309	Multi-class (6 seizure types)
TUAB	EEG (unknown)	2,339	256Hz	16 montages	10 seconds	409,455	Binary (abnormal or not)
TUEV	EEG (sleep and resting)	11,914	256Hz	16 montages	5 seconds	112,491	Multi-class (6 event types)
PTB-XL HAR	ECG Wearable sensors	21,911 10,299	500Hz 50Hz	12 ECG leads 9 coordinates	5 seconds 2.56 seconds	65,511 10,299	Binary (arrhythmias or not) Multi-class (6 actions)

Results (only show CHB-MIT, IIIC-seizure tables)

Conclusions:

- > BIOT performs better than previous biosignal classification models.
- > BIOT pre-training from other datasets can benefit the supervised tasks on new datasets.

Models	CHB	B-MIT (seizure detec	tion)	IIIC Seizure (seizure type classification)			
	Balanced Acc.	AUC-PR	AUROC	Balanced Acc.	Cohen's Kappa	Weighted F1	
SPaRCNet (Jing et al., 2023)	0.5876 ± 0.0191	0.1247 ± 0.0119	0.8143 ± 0.0148	0.5546 ± 0.0161	0.4679 ± 0.0228	0.5569 ± 0.0184	
ContraWR (Yang et al., 2021)	0.6344 ± 0.0002	0.2264 ± 0.0174	0.8097 ± 0.0114	0.5519 ± 0.0058	0.4623 ± 0.0148	0.5486 ± 0.0137	
CNN-Transformer (Peh et al., 2022)	0.6389 ± 0.0067	0.2479 ± 0.0227	$\textbf{0.8662} \pm 0.0082$	0.5476 ± 0.0103	0.4481 ± 0.0139	0.5346 ± 0.0127	
FFCL (Li et al., 2022)	0.6262 ± 0.0104	0.2049 ± 0.0346	0.8271 ± 0.0051	0.5617 ± 0.0117	0.4704 ± 0.0130	0.5617 ± 0.0171	
ST-Transformer (Song et al., 2021)	0.5915 ± 0.0195	0.1422 ± 0.0094	0.8237 ± 0.0491	0.5423 ± 0.0056	0.4492 ± 0.0056	0.5440 ± 0.0014	
(Vanilla) BIOT	$\textbf{0.6640} \pm \textbf{0.0037}$	$\textbf{0.2573} \pm \textbf{0.0088}$	0.8646 ± 0.0030	$\textbf{0.5762} \pm \textbf{0.0034}$	$\textbf{0.4932} \pm \textbf{0.0046}$	$\textbf{0.5773} \pm \textbf{0.0031}$	
Pretrained BIOT (PREST)	0.6942 ± 0.0431	0.3072 ± 0.1187	0.8679 ± 0.0106	0.5787 ± 0.0066	0.4980 ± 0.0054	0.5828 ± 0.0049	
Pretrained BIOT (PREST+SHHS)	0.6788 ± 0.0036	0.3090 ± 0.0003	0.8752 ± 0.0022	0.5800 ± 0.0004	0.5040 ± 0.0041	0.5878 ± 0.0015	
Pretrained BIOT (6 EEG datasets)	0.7068 ± 0.0457	0.3277 ± 0.0460	0.8761 ± 0.0284	0.5779 ± 0.0087	0.4949 ± 0.0103	0.5737 ± 0.0088	

1. All models use the same training set of the task, while the pre-trained BIOT models are initially pre-trained on other data sources (see Section 3.4, 3.6).

2. Bold for the best model (trained from scratch) and box for the best pre-trained models. Running time comparison is in Appendix C.4.

BIOT: Biosignal Transformer for Cross-data Learning in the Wild

NeurIPS 2023, New Orleans, LA

¹University of Illinois Urbana-Champaign ²Harvard Medical School ³Beth Israel Deaconess Medical Center Thanks for your attention!

Chaoqi Yang <u>chaoqiy2@illinois.edu</u> <u>https://github.com/ycq091044/BIOT</u>