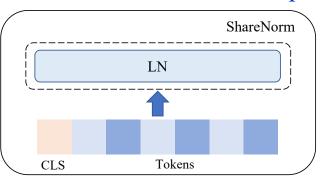
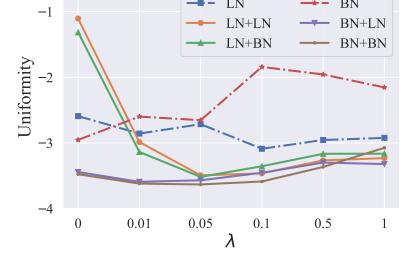
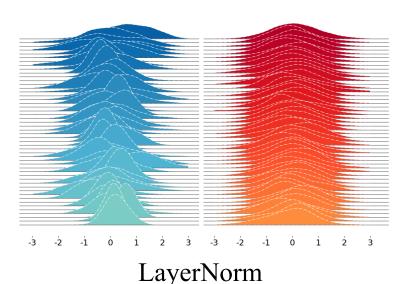
On Separate Normalization in Self-supervised Transformers

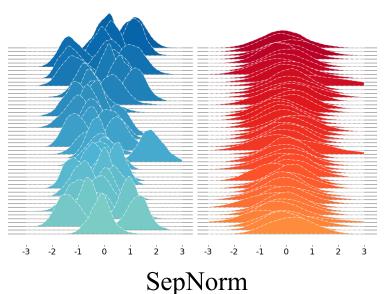


Xiaohui Chen, Yinkai Wang, Yuani Du, Soha Hassoun, Li-Ping Liu

Proposed Method (SepNorm)


Perform normalization separately on CLS and other tokens





SepNorm encourages better [CLS] representation

- SepNorm alleviates the dimensional collapse issue in the [CLS] embeddings
- 2. SepNorm achieve better uniformity when training in a contrastive approach

Implementation of SepNorm in Pytorch

```
class SepNorm(nn.Module):
    def __init__(self, hidden_size, cls_norm=nn.BatchNormld, tok_norm=nn.LayerNorm):
        super().__init__()
        self.cls_norm_layer = cls_norm(hidden_size)
        self.tok_norm_layer = tok_norm(hidden_size)

def forward(self, x):
    n, l, d = x.shape
    cls_states, hidden_states = torch.split(x, [1, 1-1], dim=1)
    cls_states = self.cls_norm_layer(cls_states.view(n,d))[:, None, :]
    hidden_states = self.tok_norm_layer(hidden_states)
    hidden_states = torch.cat((cls_states, hidden_states), dim=1)
    return hidden states
```

Results on STS and transfer tasks

		STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Unsupervised Training							
BERT _{base}	ShareNorm SepNorm	65.28 67.01	78.82 82.16	69.65 72.48	79.02 81.38	77.21 79.11	76.4 77.56	71.74 71.36	74.04 75.87
RoBERTa _{base}	ShareNorm SepNorm	68.25 66.63	81.24 82.40	72.78 74.47	81.38 82.39	80.31 80.44	79.83 81.14	68.16 69.44	76.00 76.70
	Supervised Training								
BERT _{base}	ShareNorm SepNorm	77.72 75.32	81.07 84.41	78.97 79.94	85.15 84.91	82.00 80.87	82.36 83.63	79.74 79.61	81.00 81.23
RoBERTa _{base}	ShareNorm SepNorm	77.38 75.80	80.87 84.94	78.72 80.33	84.02 85.51	82.56 82.11	83.08 84.88	78.25 79.72	80.70 81.90
		MR	CR	SUBJ	MPQA	SST2	TREC	MRPC	Avg.
	Transfer Learning								
BERT _{base}	ShareNorm SepNorm	82.78 82.82	88.79 89.08	94.69 94.30	89.86 89.70	87.94 87.97	84.44 83.88	75.99 75.21	86.36 86.14
RoBERTa _{base}	ShareNorm SepNorm	84.45 85.11	91.50 91.56	93.94 94.30	89.45 89.43	90.96 91.66	86.80 90.96	76.13 75.58	87.61 88.37