Demystifying Softmax Gating Function in Gaussian Mixture of Experts

Huy Nguyen[¢], TrungTin Nguyen[†], Nhat Ho[¢]

The University of Texas at Austin[◊] Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK[†]

November 5, 2023

Introduction

- **Problem.** Establish the convergence rates of maximum likelihood estimation under the softmax gating Gaussian mixture of experts.
- **Goals.** Understand the effects of softmax gating function on Gaussian mixture of experts via the parameter estimation problem.

Preliminaries

Setup. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R} \stackrel{\text{i.i.d}}{\sim} g_{G_*}(Y|X)$:

$$g_{G_*}(Y|X) := \sum_{i=1}^{k_*} \frac{\exp((\beta_{1i}^*)^\top X + \beta_{0i}^*)}{\sum_{j=1}^{k_*} \exp((\beta_{1j}^*)^\top X + \beta_{0j}^*)} \cdot f(Y|(a_i^*)^\top X + b_i^*, \sigma_i^*),$$
(1)

where

- k_* is the true number of experts of the form $(a_i^*)^\top X + b_i^*$;
- $f(\cdot|\mu,\sigma)$ is a Gaussian density function with mean μ and variance σ ;
- $G_*:=\sum_{i=1}^{k_*}\exp(\beta_{0i}^*)\delta_{(\beta_{1i}^*,a_i^*,b_i^*,\sigma_i^*)}$ is a true but unknown mixing measure;
- True parameters $(\beta_{0i}^*, \beta_{1i}^*, a_i^*, b_i^*, \sigma_i^*) \in \Theta \subset \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}_+.$

Preliminaries

Setup. Suppose that $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R} \stackrel{\text{i.i.d}}{\sim} g_{G_*}(Y|X)$:

$$g_{G_*}(Y|X) := \sum_{i=1}^{k_*} \frac{\exp((\beta_{1i}^*)^\top X + \beta_{0i}^*)}{\sum_{j=1}^{k_*} \exp((\beta_{1j}^*)^\top X + \beta_{0j}^*)} \cdot f(Y|(a_i^*)^\top X + b_i^*, \sigma_i^*).$$

Assumptions:

- The covariate X ∈ X follows a continuous distribution, where X is a bounded subset of ℝ^d, while the parameter space Θ is compact;
- Expert parameters $(a_1^*, b_1^*, \sigma_1^*), \ldots, (a_{k_*}^*, b_{k_*}^*, \sigma_{k_*}^*)$ are pairwise distinct;
- At least one among parameters $\beta_{11}^*, \ldots, \beta_{1k_*}^*$ is different from zero.

Preliminaries

Maximum likelihood estimation (MLE). Since the true number of experts k_* is unknown in practice, we use MLE within a class of all mixing measures with at most k atoms, where $k \ge k_*$:

$$\widehat{G}_n \in \underset{G \in \mathcal{O}_k(\Theta)}{\arg\max} \frac{1}{n} \sum_{i=1}^n \log(g_G(Y_i|X_i)),$$
(2)

where we define $\mathcal{O}_k(\Theta) := \{G = \sum_{i=1}^{k'} \exp(\beta_{0i}) \delta_{(\beta_{1i}, a_i, b_i, \sigma_i)} : 1 \le k' \le k \text{ and } (\beta_{0i}, \beta_{1i}, a_i, b_i, \sigma_i) \in \Theta \}.$

In the paper, we study the convergence rate of the MLE under the following two settings:

- Exact-fitted settings: when k_* is known, we set $k = k_*$;
- Over-fitted settings: when k_* becomes unknown, we set $k > k_*$.

Proposition 1.

Under the Hellinger distance $h(\cdot, \cdot)$, the density estimation $g_{\widehat{G}_n}(Y|X)$ converges to the true density $g_{G_*}(Y|X)$ at the following rate:

$$\mathbb{P}\Big(\mathbb{E}_X[h(g_{\widehat{G}_n}(\cdot|X), g_{G_*}(\cdot|X))] > C\sqrt{\log(n)/n}\Big) \lesssim n^{-c},$$
(3)

where c and C are universal constants.

• Under either the exact-fitted or over-fitted settings, the density estimation rate is of order $\mathcal{O}(n^{-1/2})$ (up to some logarithmic factor), which is parametric on the sample size.

Exact-fitted Settings

Voronoi cells. A Voronoi cell of *G* generated by generated by the true component $\omega_j^* := (\beta_{1j}^*, a_j^*, b_j^*, \sigma_j^*)$ of G_* , for $1 \le j \le k_*$, is defined as $\mathcal{A}_j \equiv \mathcal{A}_j(G) := \{i \in \{1, 2, \dots, k\} : \|\omega_i - \omega_j^*\| \le \|\omega_i - \omega_\ell^*\|, \forall \ell \ne j\},$ (4)

where $\omega_i := (\beta_{1i}, a_i, b_i, \sigma_i)$.

Figure: Illustration of Voronoi cells. Blue triangles represent for the components ω_j^* of G_* (true components), while red rounds stand for the components ω_i of G (fitted components).

Voronoi loss. Then, the loss function of interest is

$$\mathcal{D}_{1}(G,G_{*}) := \inf_{t_{1},t_{2}} \sum_{j=1}^{k_{*}} \left[\sum_{i \in \mathcal{A}_{j}} \exp(\beta_{0i}) \| (\Delta_{t_{2}}\beta_{1ij}, \Delta a_{ij}, \Delta b_{ij}, \Delta \sigma_{ij}) \| + \left| \sum_{i \in \mathcal{A}_{j}} \exp(\beta_{0i}) - \exp(\beta_{0j}^{*} + t_{1}) \right| \right], \quad (5)$$

where $\Delta_{t_2}\beta_{1ij} := \beta_{1i} - \beta_{1j}^* - t_2$, $\Delta a_{ij} := a_i - a_j^*$, $\Delta b_{ij} := b_i - b_j^*$ and $\Delta \sigma_{ij} := \sigma_i - \sigma_j^*$.

★ 3 → 3

Exact-fitted Settings

Theorem 1.

Given the exact-fitted settings, i.e., $k = k_*$, we find that

$$\mathbb{E}_X[h(g_G(\cdot|X), g_{G_*}(\cdot|X))] \gtrsim \mathcal{D}_1(G, G_*), \tag{6}$$

for any $G \in \mathcal{E}_{k_*}(\Theta) := \mathcal{O}_{k_*}(\Theta) \setminus \mathcal{O}_{k_*-1}(\Theta)$. As a result, there exist universal constants $C_1 > 0$ and $c_1 > 0$ such that:

$$\mathbb{P}\Big(\mathcal{D}_1(\widehat{G}_n, G_*) > C_1\sqrt{\log(n)/n}\Big) \lesssim n^{-c_1}.$$
(7)

Setting	Loss Function	$g_{G_*}(Y X)$	$\exp(\beta_{0j}^*)$	β_{1j}^*, b_j^*	a_j^*, σ_j^*
Exact-fitted	\mathcal{D}_1	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1/2})$

Figure: Summary of the convergence rates of density estimation and parameter estimation under the exact-fitted settings.

Main Challenges. To establish the Hellinger lower bound, we use the Taylor expansion to decompose the term $g_{\widehat{G}_n}(Y|X) - g_{G_*}(Y|X)$ into a combination of linearly independent elements.

However, there are two interactions among softmax gating and expert parameters via the following partial differential equations (PDEs):

$$\frac{\partial^2 u}{\partial \beta_1 \ \partial b} = \frac{\partial u}{\partial a}; \qquad \frac{\partial^2 u}{\partial b^2} = 2 \ \frac{\partial u}{\partial \sigma}, \tag{8}$$

where $u(Y|X; \beta_1, a, b, \sigma) := \exp(\beta_1^\top X) \cdot f(Y|a^\top X + b, \sigma)$. The above PDEs lead to a number of linearly dependent derivative terms.

Over-fitted Settings

Voronoi loss. The loss function of interest is given by

$$\mathcal{D}_{2}(G,G_{*}) := \inf_{t_{1},t_{2}} \left\{ \sum_{\substack{j:|\mathcal{A}_{j}|=1,\\i\in\mathcal{A}_{j}}} \exp(\beta_{0i}) \| (\Delta_{t_{2}}\beta_{1ij},\Delta a_{ij},\Delta b_{ij},\Delta \sigma_{ij}) \| \\ + \sum_{\substack{j:|\mathcal{A}_{j}|>1,\\i\in\mathcal{A}_{j}}} \exp(\beta_{0i}) \Big(\| (\Delta_{t_{2}}\beta_{1ij},\Delta b_{ij}) \|^{\bar{r}(|\mathcal{A}_{j}|)} + \| (\Delta a_{ij},\Delta \sigma_{ij}) \|^{\bar{r}(|\mathcal{A}_{j}|)/2} \Big) \\ + \sum_{\substack{j=1\\i\in\mathcal{A}_{j}}}^{k_{*}} \Big| \sum_{i\in\mathcal{A}_{j}} \exp(\beta_{0i}) - \exp(\beta_{0j}^{*} + t_{1}) \Big| \Big\}.$$
(9)

Lemma 1.

For any $d \ge 1$, we have $\bar{r}(2) = 4$ and $\bar{r}(3) = 6$. We conjecture that $\bar{r}(m) = 2m$.

Huy Nguyen

November 5, 2023

11 / 12

Over-fitted Settings

Theorem 2.

Under the over-fitted settings, i.e. $k > k_*$, we obtain that

$$\mathbb{E}_X[h(g_G(\cdot|X), g_{G_*}(\cdot|X))] \gtrsim \mathcal{D}_2(G, G_*), \tag{10}$$

for any $G \in \mathcal{O}_k(\Theta)$. Consequently, there exist universal constants $C_2 > 0$ and $c_2 > 0$ such that

$$\mathbb{P}\Big(\mathcal{D}_2(\widehat{G}_n, G_*) > C_2\sqrt{\log(n)/n}\Big) \lesssim n^{-c_2}.$$
(11)

Setting	Loss Function	$g_{G_*}(Y X)$	$\exp(\beta_{0j}^*)$	eta_{1j}^*, b_j^*	a_j^*, σ_j^*
Over-fitted	\mathcal{D}_2	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1/2\bar{r}(\mathcal{A}_j)})$	$\mathcal{O}(n^{-1/\bar{r}(\mathcal{A}_j)})$

Figure: Summary of the convergence rates of density estimation and parameter estimation under the over-fitted settings.