Optimality of message-passing architectures for sparse graphs

Aseem Baranwal, Kimon Fountoulakis, Aukosh Jagannath

OF DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

Contributions

- Study of node classification on sparse feature-decorated graphs on a fairly general statistical data model
- Define a notion of asymptotically local Bayes optimality
- Optimal classifier is realizable via a message-passing GNN architecture
- Generalization error bounds in terms of recognizable SNR in the data
- Empirical demonstration and comparison with other architectures

n = # of nodes

d = # of features per node

Graph Component $A = (a_{uv})_{u,v \in [n]} \sim \text{SBM}(n, Q)$ $Pr(a_{uv} = 1 | y_u, y_v) = q_{y_u y_v}$ $q_{ii} = O(1/n)$

Data Model

- $\{y_u\}_{u\in[n]} = \text{class labels}$
- C = # of classes

Node features $X_{u} \sim \mathbb{P}_{y_{u}} \in \mathbb{R}^{d}$ $\mathbb{P}_c = \text{Feature distribution for class } c$

Data Model

$G_n \sim \text{CSBM}(n, \mathbb{P}, Q)$ denotes a feature-decorated graph from this model with:

- Adjacency matrix $A \in \{0,1\}^{n \times n}$
- Node features $X \in \mathbb{R}^{n \times d}$

 u_n denotes a uniform at random node in G_n (G_n, u_n) denotes a graph rooted at node u_n

<u>Question</u>: Given \mathbb{P} , Q and a root $u_n \in V(G_n)$ along with its local for the model?

neighbourhood information, how to define the notion of an "optimal classifier"

Denoted $f(u, \eta_{\ell}(u), \{X_v\}_{v \in \eta_{\ell}(u)})$ Input: • A root node *u* • Subgraph induced by $\eta_{\ell}(u)$, the ℓ -hop neighbourhood of u• Features $\{X_v\} \forall v \in \eta_{\ell}(u)$ Output: a class label prediction \hat{y}_{μ} for μ

 $\mathscr{C}_{\mathscr{C}}$ denotes the class of all \mathscr{C} -local classifiers.

7-local Classifier

Local Weak Convergence

from this model converges locally weakly:

- (G, u) is a feature-decorated Poisson Galton-Watson tree.
- Roughly speaking, in the limit $n \rightarrow \infty$ the local neighbourhood of a uniform at random node behaves like the local neighbourhood of a Poisson Galton-Watson tree.

- For a uniform at random root node u_n , the sequence of rooted graphs
 - $(G_n, u_n) \xrightarrow{LWC} (G, u).$

the root of the local weak limit (G, u) over \mathscr{C}_{ℓ} .

Theorem

Optimal Classifier

- We say h_{ρ}^* is the asymptotically ℓ -locally Bayes optimal classifier of the root
- of the sequence $\{(G_n, u_n)\}$ if it minimizes the misclassification probability of

GNN Architecture

 $H^{(0)} = X.$ $H^{(l)} = \sigma_l (H^{(l-1)} W^{(l)} + \mathbf{1}_n b^{(l)}) \text{ for } l \in [L],$ Q = sigmoid(Z), $M_{u,i}^{(k)} = \max_{i \in [C]} \left\{ H_{u,j}^{(L)} + \log(Q_{i,j}^k) \right\} \text{ for } k \in [\ell], u \in [n], i \in [C]$ $\hat{y}_{u} = \underset{i \in [C]}{\operatorname{argmax}} \left(H_{u,c}^{(L)} + \sum_{k=1}^{\ell} \tilde{A}_{u,:}^{(k)} M_{:,i}^{(k)} \right)$

 $d \times 1$

$W^{(l)}$, $b^{(l)}$ for $l \in [L]$ and Z are learnable parameters of the model.

$\mathbb{P} = \{\mathcal{N}(\pm \mu, \sigma^2 I)\} \quad \text{Graph signal } \Gamma = \frac{a-b}{a+b}$

 $Q = \frac{1}{n} \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ Feature signal $\gamma = \frac{2 \|\mu\|}{\sigma}$

 $h_{\ell}^*(u, \{X_v\}_{v \in \eta_{\ell}(u)}) = \operatorname{sgn}\left(\langle X_u \rangle_{u}\right)$

 $M_k(x) = \operatorname{sgn}(a - b) \cdot \operatorname{CLIP}(\langle x, \mu \rangle)$

$$\langle u, \mu \rangle + \sum_{v \in \eta_{\ell}(u) \setminus \{u\}} M_{d(u,v)}(X_v)$$

, $\pm c_k$, $c_k = \log\left(\frac{1+\Gamma^k}{1-\Gamma^k}\right)$

Re

 $h_{\ell}^*(u, \{X_v\}_{v \in \eta_{\ell}(u)}) = \operatorname{sgn}($

$M_k(x) = \operatorname{sgn}(a - b) \cdot \operatorname{CLIP}(\langle x, y \rangle)$

Theorem

- When $\Gamma \to 1$, h_{ρ}^* collapses to a typical GCN.
- When $\Gamma \in (0,1)$, h_{ρ}^* interpolates and is superior to MLP and GCN.

$$\begin{aligned} \langle X_{u}, \mu \rangle + \sum_{\nu \in \eta_{\ell}(u) \setminus \{u\}} M_{d(u,\nu)}(X_{\nu}) \\ , \mu \rangle, \pm c_{k} \rangle, \qquad c_{k} = \log\left(\frac{1+\Gamma^{k}}{1-\Gamma^{k}}\right) \end{aligned}$$

• When $\Gamma o 0$, $h_{\scriptscriptstyle arsigma}^*$ ignores all messages and collapses to a simple MLP.

(a) Fixed graph signal $\Gamma = 0$.

Results

(b) Fixed graph signal $\Gamma = 1$.

(a) Varying γ with fixed $\Gamma = 0.42$.

Results

(b) Varying Γ with fixed $\gamma = 1$.

Non-Asymptotic Result

Theorem

 $o_n(1)$ away from the true optimal in terms misclassification probability.

- $h_{\scriptscriptstyle arsigma}^*$ minimizes probability of misclassification in the local weak limit of the model
- $h_{\ell,n}^*$ minimizes probability of misclassification in the finite *n* model
- We show that $\operatorname{Error}(h_{\ell}^*) \operatorname{Error}(h_{\ell})$
- Proof technique utilizes Stein's method

For fixed number of nodes n and $4\ell \leq \log_{\mathbb{E} \deg}(n)$, the classifier h_{ℓ}^* is

$$h_{\ell,n}^*) = o_n(1)$$