
# Actively Testing Your Model While It Learns: Realizing Label-efficient Learning in Practice

Dayou Yu<sup>1</sup> Weishi Shi<sup>2</sup> Qi Yu<sup>1</sup>

<sup>1</sup>Rochester Institute of Technology

<sup>2</sup>University of North Texas





# Active Learning / Active Testing

#### **Active Learning**

Low labeling budget for training, active training selection Achieve better performance, with sampling bias?

# Active Learning / Active Testing

#### **Active Learning**

Low labeling budget for training, active training selection Achieve better performance, with sampling bias?

How to evaluate?

# Active Learning / Active Testing

#### **Active Learning**

Low labeling budget for training, active training selection Achieve better performance, with sampling bias?

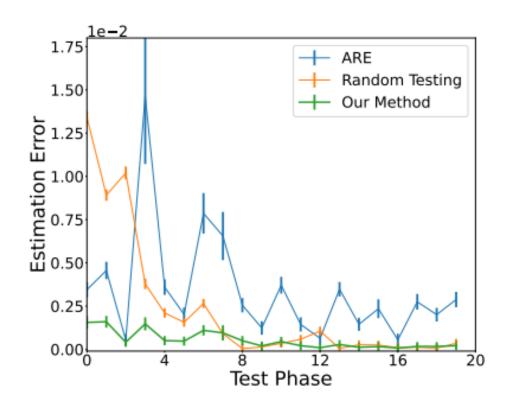
#### **Active Testing**

Low labeling budget for testing (validation)

Active testing selection, unbiased loss (risk) estimation

#### Active risk estimation [1], active testing [2], active surrogate estimators [3]

[1] Christoph Sawade, et al. Active risk estimation. In ICML, 2010.


[2][3] Jannik Kossen, et al. Active testing: Sample efficient model evaluation. In International Conference on Machine Learning, pages 5753–5763. PMLR, 2021. / Active surrogate estimators: An active learning approach to label-efficient model evaluation, in Advances in Neural Information Processing Systems, 2022.

# Active Testing while Learning - Challenges

Low labeling budget for both learning and testing

Model changes during active learning

Will we still have effective testing selection and unbiased loss (risk) estimation?



#### **Active Quizzes**

Selecting a quiz set after one active learning round

$$\mathcal{Q}_t = \{\mathbf{x}_t^{(1)}, ..., \mathbf{x}_t^{(n_t)}\}$$

A "locally" optimal test set – asymptotically converges to the true risk

$$\sqrt{n_t}(\widehat{R}_{\mathcal{Q}_t}(f_T) - R(f_T)) \xrightarrow{n_t \to \infty} \mathcal{N}(0, \sigma_t^2(f_T))$$

Selected by the current optimal selection proposal  $q^*(\mathbf{x})$ 

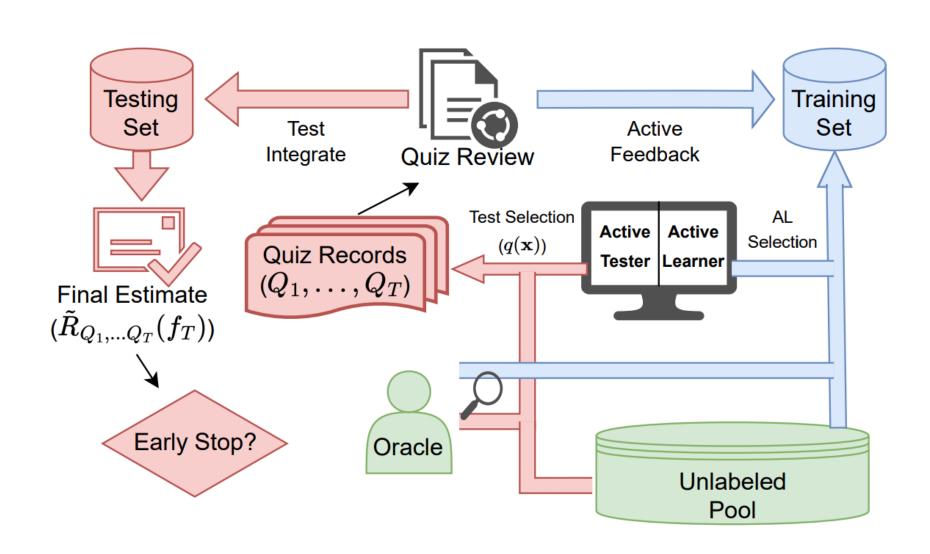
Integrate 
$$\tilde{R} = \sum_{t=1}^{T} v_t \hat{R}_{\mathcal{Q}_t}$$
 Quiz Records  $(Q_1, \dots, Q_T)$ 

## Active Learning-Testing-Feedback Loop

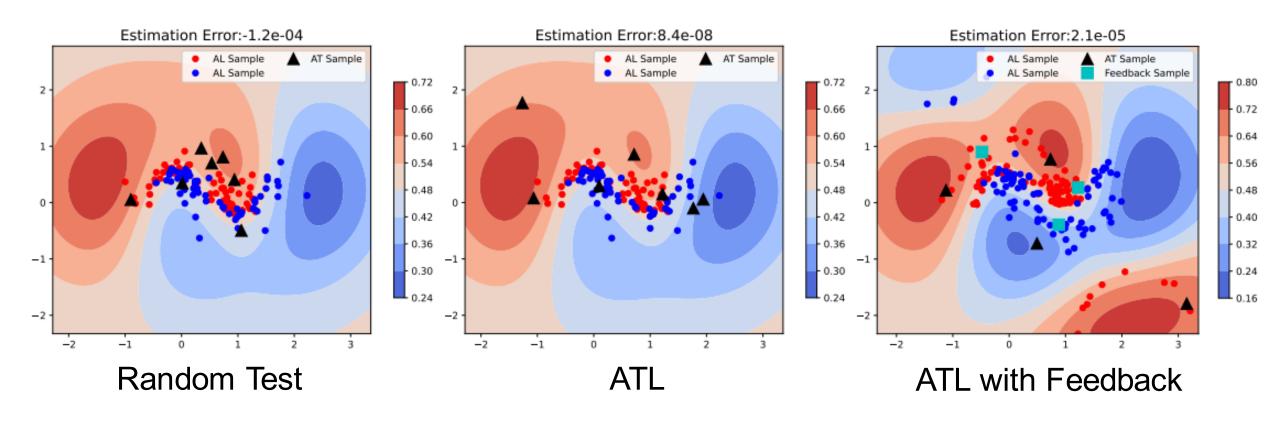
#### **Combined learning-testing objective**

$$S_{FB}^* = \arg\min_{S_{FB} \in \{Q_1, ..., Q_T\}} [R(f_{\theta|(S_L \cup S_{FB})}) + C||R - \tilde{R}_{(\{Q_1, ..., Q_T\} \setminus S_{FB})}||]$$

$$(\mathcal{O}(1/\sqrt{N_L + N_{FB}}) + \mathcal{O}(1/\sqrt{N_T - N_{FB}}))$$


Improving training performance while maintaining estimation error

Learning objective (improved)




Estimation quality (slightly decreased)

# Active Testing while Learning Framework



## Active Learning-Testing-Feedback Loop



Visualization using synthetic dataset

Label-efficient estimation + Improved learning performance from feedback

# Experiments

 Risk estimation error evaluation with active testing while learning

Table 1: Estimation error: squared difference between estimate and true risks ( $\times 10^{-3}$ )

| Dataset          | AL round<br>Method | 4               | 8                                 | 12                                | 16                                | 20                                |
|------------------|--------------------|-----------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| MNIST            | ARE quiz           | $5.27 \pm 5.42$ | $6.39 \pm 1.54$                   | $2.96 \pm 3.45$                   | $8.85 \pm 4.31$                   | $8.31 \pm 3.96$                   |
|                  | AT integrate       | $16.3 \pm 24.5$ | $32.8 \pm 22.1$                   | $6.93 \pm 18.0$                   | $8.72 \pm 3.59$                   | $3.11 \pm 2.98$                   |
|                  | ASE integrate      | $3.45 \pm 2.76$ | $1.45 \pm 1.00$                   | $2.17 \pm 5.06$                   | $4.00 \pm 2.37$                   | $5.88 \pm 5.27$                   |
|                  | ATL-NF             | $2.57 \pm 1.17$ | $\textbf{0.79} \pm \textbf{1.15}$ | $\textbf{0.17} \pm \textbf{0.15}$ | $\textbf{0.56} \pm \textbf{0.30}$ | $\textbf{1.32} \pm \textbf{0.37}$ |
| Fashion<br>MNIST | ARE quiz           | $4.24 \pm 3.01$ | $4.62 \pm 7.77$                   | $8.63 \pm 2.47$                   | $5.71 \pm 1.87$                   | $23.78 \pm 1.75$                  |
|                  | AT integrate       | $11.9 \pm 6.1$  | $36.1 \pm 30.7$                   | $34.1 \pm 31.4$                   | $28.0 \pm 36.9$                   | $22.5 \pm 25.7$                   |
|                  | ASE integrate      | $11.1 \pm 3.63$ | $3.72 \pm 3.53$                   | $3.56 \pm 8.78$                   | $5.29 \pm 9.78$                   | $8.42 \pm 6.72$                   |
|                  | ATL-NF             | $3.64 \pm 1.61$ | $\textbf{0.67} \pm \textbf{0.38}$ | $\textbf{0.96} \pm \textbf{0.16}$ | $\textbf{0.98} \pm \textbf{0.43}$ | $\textbf{3.04} \pm \textbf{1.37}$ |
| CIFAR10          | ARE quiz           | $10.1 \pm 8.79$ | $13.8 \pm 13.0$                   | $22.2 \pm 14.7$                   | $21.9 \pm 31.4$                   | $14.1 \pm 13.4$                   |
|                  | AT integrate       | $6.89 \pm 6.98$ | $12.0 \pm 7.18$                   | $21.8 \pm 5.73$                   | $12.9 \pm 9.76$                   | $38.9 \pm 25.6$                   |
|                  | ASE integrate      | $10.9 \pm 3.67$ | $6.51 \pm 2.87$                   | $7.53 \pm 1.46$                   | $17.6 \pm 2.66$                   | $23.2 \pm 6.10$                   |
|                  | ATL-NF             | $8.83 \pm 7.79$ | $3.06 \pm 5.04$                   | $4.95 \pm 7.12$                   | $\textbf{7.94} \pm \textbf{5.22}$ | $6.20 \pm 5.79$                   |

# Experiments

Learning performance (hold-out test risk) with active feedback

Table 2: Hold-out test risk using different feedback criteria over 20 AL rounds

| Dataset          | AL round<br>Method | 4                                 | 8                                 | 12                                | 16                                | 20                                |
|------------------|--------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| MNIST            | ATL-NF             | $0.92 \pm 0.06$                   | $0.55 \pm 0.08$                   | $0.46 \pm 0.06$                   | $0.32 \pm 0.04$                   | $0.22 \pm 0.02$                   |
|                  | ATL-RF             | $0.92 \pm 0.12$                   | $0.54 \pm 0.02$                   | $0.41 \pm 0.05$                   | $0.29 \pm 0.03$                   | $0.21 \pm 0.02$                   |
|                  | ATL                | $\textbf{0.88} \pm \textbf{0.07}$ | $\textbf{0.53} \pm \textbf{0.04}$ | $\textbf{0.39} \pm \textbf{0.03}$ | $\textbf{0.26} \pm \textbf{0.01}$ | $\textbf{0.19} \pm \textbf{0.03}$ |
| Fashion<br>MNIST | ATL-NF             | $0.75 \pm 0.03$                   | $0.69 \pm 0.02$                   | $0.61 \pm 0.02$                   | $0.57 \pm 0.04$                   | $0.56 \pm 0.03$                   |
|                  | ATL-RF             | $0.75 \pm 0.04$                   | $0.68 \pm 0.02$                   | $0.61 \pm 0.01$                   | $0.58 \pm 0.06$                   | $0.56 \pm 0.04$                   |
|                  | ATL                | $\textbf{0.74} \pm \textbf{0.03}$ | $\textbf{0.65} \pm \textbf{0.04}$ | $\textbf{0.59} \pm \textbf{0.02}$ | $\textbf{0.56} \pm \textbf{0.03}$ | $\textbf{0.51} \pm \textbf{0.01}$ |
| CIFAR10          | ATL-NF             | $1.91 \pm 0.04$                   | $1.76 \pm 0.05$                   | $1.72 \pm 0.01$                   | $1.66 \pm 0.02$                   | $1.55 \pm 0.03$                   |
|                  | ATL-RF             | $1.91 \pm 0.03$                   | $1.77 \pm 0.04$                   | $1.69 \pm 0.03$                   | $1.60 \pm 0.04$                   | $1.54 \pm 0.07$                   |
|                  | ATL                | $\textbf{1.90} \pm \textbf{0.05}$ | $\textbf{1.76} \pm \textbf{0.02}$ | $\textbf{1.65} \pm \textbf{0.03}$ | $\textbf{1.58} \pm \textbf{0.02}$ | $\textbf{1.53} \pm \textbf{0.02}$ |

#### **Extensions and Future Directions**

$$\Delta \tilde{R}_t = \frac{\sum_{i=t-w}^t v_i \tilde{R}_i}{\sum_{i=t-w}^t v_i} - \frac{\sum_{i=t-w-1}^{t-1} v_i \tilde{R}_i}{\sum_{i=t-w-1}^{t-1} v_i}$$

Average early stopping iteration and final test accuracy comparison (with variance)

| Dataset | Method   | Iteration | Variance | Test Accuracy | Variance |
|---------|----------|-----------|----------|---------------|----------|
| MNIST   | SP       | 15        | 6.8      | 94.52%        | 6.0e - 5 |
| MINIST  | Combined | 11        | 1.2      | 94.08%        | 3.1e - 5 |
| Fashion | SP       | 16        | 4.4      | 81.32%        | 3.7e - 5 |
| MNIST   | Combined | 12.4      | 1.04     | 80.12%        | 2.4e - 5 |
| CIFAR10 | SP       | 12        | 2.8      | 53.87%        | 1.4e - 4 |
| CHARIO  | Combined | 12.8      | 0.16     | 54.43%        | 8.9e - 5 |

Future work: Principled feedback strategy, model-specific sampling proposals

# Thank you