
Equivariant Single View Pose Prediction
Via Induced and Restricted Representations

Owen Howell ∗1, David Klee2, Ondrej Biza2, Linfeng Zhao2, and Robin Walters2

1 Department of Electrical and Computer Engineering, Northeastern University, Boston MA, 02115
2 Khoury College of Computer Sciences, Northeastern University, Boston MA, 02115

Abstract

Learning about the three-dimensional world from two-dimensional images is a
fundamental problem in computer vision. An ideal neural network architecture
for such tasks would leverage the fact that objects can be rotated and translated
in three dimensions to make predictions about novel images. However, imposing
SO(3)-equivariance on two-dimensional inputs is difficult because the group of
three-dimensional rotations does not have a natural action on the two-dimensional
plane. Specifically, it is possible that an element of SO(3) will rotate an image out
of plane. We show that an algorithm that learns a three-dimensional representation
of the world from two dimensional images must satisfy certain consistency proper-
ties which we formulate as SO(2)-equivariance constraints. We use the induced
and restricted representations of SO(2) on SO(3) to construct and classify archi-
tectures which satisfy these consistency constraints. We prove that any architecture
which respects said consistency constraints can be realized as an instance of our
construction. We show that three previously proposed neural architectures for 3D
pose prediction are special cases of our construction. We propose a new algorithm
that is a learnable generalization of previously considered methods. We test our
architecture on three pose predictions task and achieve SOTA results on both the
PASCAL3D+ and SYMSOL pose estimation tasks.

1 Introduction

One of the fundamental problems in computer vision is learning representations of 3D objects from
2D images [1–3]. By understanding how image features correspond to a physical object, a model
can generalize better to novel views of the object, for instance, when estimating the pose of an
object. In general, neural networks that respect the symmetries of a problem are more noise robust
and data efficient, while also less prone to over-fitting [4]. Three-dimensional space has a natural
symmetry group of three-dimensional rotations and three dimensional translations, SE(3). While
we would like to leverage this symmetry to design improved neural architectures, serious challenges
exist to incorporating 3D symmetry when applied to image data. Specifically, a projection of a three-
dimensional scene into a two-dimensional plane does not transform equivariantly under all elements
of SE(3). This is because there is no a-priori model for how two-dimensional images transform
under out-of-plane object rotations. The SO(3) symmetry is reduced to the SO(2) subgroup of
SO(3) which corresponds to all rotations that map the projection plane into the projection plane.
Cohen and Welling [5] showed how to design neural networks that are explicitly SO(2)-equivariant
and accept images as inputs. However, this captures only the fact that the group truth lives in a space
that is acted on by SO(2) ⊂ SO(3) and disregards the fact that the SO(3) also acts on the space of
allowable ground truths.
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The allowed architectures of G-equivariant neural networks are much more constrained then general
multi-layer perceptrons. The requirement of G-equivariance places strict restrictions on the allowed
linear maps and the allowed non-linear functions in each network layer [5, 6]. Because of this,
the structure of allowable G-equivariant neural networks can be completely classified based on the
representation theory of the group G [4, 7, 8]. Specifically, for compact groups, it is possible to
completely characterize the structure of all possible kernels of G-equivariant networks [8].

Figure 1: A map Φ : F → F↑ from signals
on R2 to signals on S2. Let SO(2) be the
subgroup that consists of all in-plane rota-
tions ( i.e. about the axis defined by the red
arrow). The map Φ must be equivariant with
respect to this SO(2) ⊆ SO(3) subgroup.

We argue that any equivarient machine learning algorithm
that builds a three dimensional model of the world from
two-dimensional images must satisfy a natural geometric
consistency property. Using the restricted representation,
this consistency property is equivalent to a set of SO(2)-
equivarience constraints. We give a complete characteri-
zation of maps that satisfy this property. Using Frobinious
Reciprocity theorem, we show that this geometric con-
straint can also be derived using induced representations.
The classification theorems derived in [5, 8, 4] are de-
rived assuming that both the input and output layers are
G-equivariant. For the construction presented in 4, we in-
stead map H-equivariant functions to G-equivariant func-
tions. Our restricted/induced representation arguments
give a natural generalization of equivarient maps between
different groups. We derive the induced and restricted rep-
resentation analogies of the theorems presented in [9, 8].

1.1 Importance and Contribution

In this work, we will show how the induced and restricted representations can be used to construct
neural architectures that accept image data and leverage SO(3)-equivarient methods to avoid learning
nuisance transformations in three-dimensional space.

We show that our proposed construction satisfies both a completeness property and a universal
property. Specifically, let H be the subgroup of G that maps in-plane images to in-plane images.
The induced representation construction is complete in that all group valued functions on G can
be induced from a set of group valued functions on H . The construction is universal in that all
multi-linear maps which map H-equivariant functions to G-equivariant functions are specific cases
of the induced representation, modulo isomorphism. Furthermore, we show that the architectures
proposed in [10, 11] are special cases of our construction for the icosahedral group G = A5 and the
construction proposed in [12] is a special case of our construction for the three-dimensional rotation
group G = SO(3). Our method achieves state of the art performance for orientation prediction on
PASCAL3D+ [13] and SYMSOL [14] datasets.

Contributions:

• We propose a unified theory for learning three dimensional representations from two dimen-
sional images. We show that algorithms which learn three-dimensional representations from
two-dimensional images must satisfy certain consistency properties, which are equivalent to
SO(2)-steerability constraints.

• We introduce a fully differentiable layer called an induction/restriction layer that maps
signals on the plane into signals on the sphere. We show that the induction/restriction
layer satisfies a natural consistency constraint and prove both a completeness and universal
property for our construction.

• Our method achieves SOTA performance for orientation prediction on PASCAL3D+ and
SYMSOL datasets.

2 Related Work

Equivariant Learning Incorporating problem symmetry into the design of neural networks has
been effective in domains such as computer vision [15, 16], point cloud processing [17, 18], and
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robotics [19]. Cohen and Welling [9] introduced the group convolution operation, a trainable layer
that can be used to build networks that are equivariant to 2D [5, 20] and 3D transformations [21, 22].
The majority of past works have studied end-to-end equivariant models, where the input can be
transformed by the action of the group.

There has been growing interest in leveraging 3D symmetry from 2D inputs. [23, 24] learned a 3D
transformable latent space from images of a single object. [25] trained a convolutional network to
predict pre-trained SO(3) equivariant embeddings, while [11, 10, 12] mapped image features onto
elements of the discrete group of SO(3), using structured view points or a hand-coded projections,
respectively. In contrast to prior work, we provide a theoretical foundation for learned equivariant
mappings from 2D to 3D, which additionally guides us to introduce a more effective learnable
mapping operation.

Object Pose Estimation Predicting the 3D rotation of objects is an important problem in fields
like autonomous driving [26], robotics [27] and cryogenic electron microscopy [28]. Many works
[29, 30] have used a regression approach, and others [31–33] have identified ways to mitigate the
discontinuities along the SO(3) manifold. More recent works have explored ways to model pose
as a distribution over 3D rotations, which handles object symmetries and captures uncertainty. [34],
[35] and [36] predict parameters for Bingham, von Mises and Laplace distributions, respectively.
These families of distributions can have limited expressivity, so other work explored using implicit
networks [14] or the Fourier basis [12] to model more complex pose distributions.

3 Background

We introduce the induced and restricted representations. For a more extensive review of representation
theory, see A.

Let V be a vector space over C. A representation (ρ, V ) of G is a map ρ : G → Hom[V, V ] such that

∀g, g′ ∈ G, ∀v ∈ V, ρ(g · g′)v = ρ(g) · ρ(g′)v
Concisely, a group representation is a embedding of a group into a set of matrices. The matrix
embedding must obey the multiplication rule of the group. We introduce the Restricted Representation
and Induced Representation.

Restricted Representation Let H ⊆ G. Let (ρ, V ) be a representation of G. The restricted
representation of (ρ, V ) from G to H is denoted as ResGH [(ρ, V )]. Intuitively, ResGH [(ρ, V )] can be
viewed as (ρ, V ) evaluated on the subgroup H of G. Specifically,

∀h ∈ H, ∀v ∈ V, ResGH [ρ](h)v = ρ(h)v

For a more in depth discussion of the restricted representation, please see A.

Induced Representation The induced representation is a way to construct representations of a
larger group G out of representations of a subgroup H ⊆ G. Let (ρ, V ) be a representation of H .
The induced representation of (ρ, V ) from H to G is denoted as IndGH [(ρ, V )]. Define the space of
functions

F = { f | f : G → V, ∀h ∈ H, f(gh) = ρ(h−1)f(g) }

Then the induced representation is defined as (π,F) = IndGH [(ρ, V )] where the induced action π
acts on the function space F via

∀g, g′ ∈ G, ∀f ∈ F , (π(g) · f)(g′) = f(g−1g′)

Please see A for an in depth discussion of the induced representation. The induced and restricted
representations are adjoint functors [37].

4 Method

Convolutional networks or vision transformers are typically used to extract spatial feature maps from
2D images. For convenience we ignore discritization and treat the feature maps as having continuous
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inputs f : R2 → Rd. To leverage spatial symmetries in 3D, we would like to map our features f
from a plane onto a sphere: g : S2 → RD. Klee et al. [12] proposed one such mapping, where the
planar feature map is stretched over a hemisphere, but other possible mappings exist.

We formalize the equivariance property every projection should have through the theory of induced
and restricted representations. The constraints that we impose have a intuitive geometric interpretation.
We give a complete characterization of all possible linear and equivariant projections, Φ, from planar
features to a spherical representation. Our general formulation includes [12] as a special case, and we
show that a learnable equivariant projection leads to better predictive models.

4.1 Equivariant 2D to 3D Projection by Induced and Restricted Representations

We first derive the SO(2)-equivariance constraint for the most general linear mapping from images
to spherical signals.

Image inputs We first describe F the space of image input signals. Let V and V ↑ be vector spaces.
Let F be the vector space of all V -valued signals defined on the plane

F = { f | f : R2 → V }.

Elements of F are sometimes called SE(2)-steerable feature fields [20]. The group SE(2) =
R2 ⋊ SO(2) of 2D translations and rotations acts on F via representation π. Each h ∈ SE(2) has a
unique factorization h = h̄hc where h̄ ∈ R2 is a translation and hc ∈ SO(2) is a rotation. Then the
action π is defined

∀f ∈ F , r ∈ R2, h ∈ SE(2), π(h) · f(r) = ρ(hc)f(h
−1r)

where (ρ, V ) is an SO(2)-representation describing the transformation of the fibers of f and (π,F) =

Ind
SE(2)
SO(2)[(ρ, V )] so that (π,F) gives a representation of the group SE(2) [9].

Spherical outputs We would like to map signals in F into functions from S2 into the vector space
V ↑. Let F↑ be the vector space of all such outputs defined as

F↑ = { f | f : S2 → V ↑ }

The group SO(3) acts on the vector space F↑ via

∀f↑ ∈ F↑, n̂ ∈ S2, g ∈ SO(3), π↑(g) · f↑(n̂) = ρ↑(g)f↑(g−1n̂)

where ρ↑(g) describes the SO(3) fiber representation.

SO(2)-equivariant image to sphere Let H = SO(2) be the SO(2) subgroup of SO(3) that
corresponds to in-plane rotations of the image. Our goal is to classify H-equivariant linear maps
Φ : F → F↑. This is equivalent to the constraint that

∀h ∈ H = SO(2), f ∈ F , Φ(π(h) · f) = π↑(h) · Φ(f) (1)

The constraint enforces equivarient with respect to SO(2) transformations. By definition, the evalua-
tion of π↑(h) at h ∈ SO(2) subgroup is the restricted representation π↑(h) = Res

SO(3)
SO(2)[π

↑](h).

4.2 Solving the Kernel Constraint

We use tools from [38, 8] to solve for the space of all possible maps satisfying the constraint 1, giving
the trainable space for the image to sphere layer.

Our conclusion is that instead of mapping arbitrary SO(2)-input representation to arbitrary SO(2)-
output representation, the allowed input and output representations (ρ, V ) and (ρ↑, V ↑) must satisfy
additional constraints. Specifically, not every representation can be realized as the restriction of
an SO(3) to SO(2) representation 2. Although in this paper we focus on orientation estimation,
the equivariant framework in Section C.0.1 is more general. In the Appendix D, we formulate and
solve analogous equivariance constraints for both 6DoF-pose estimation and monocular volume
reconstruction.
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Theorem 1. The constraint in Equation 1 can be solved exactly using the results of [38, 8]. The most
linear general map Φ : F → F↑ can be expanded as

[Φ(f)](n̂) =

∫
r∈R2

dr κ(n̂, r)f(r)

where κ : R2 × S2 → Hom[V, V ↑]. Then, the exact form of κ can be written as

κ(n̂, r) =

∞∑
ℓ=0

Fℓ(r)
TYℓ(n̂) (2)

where Yℓ(n̂) is the vectorization of the ℓ-type spherical harmonics and each Fℓ(r) is an standard
SO(2)-steerable kernel [9, 38] that has input SO(2)-representation (ρ, V ) and output SO(2)-
representation (ρℓ, V ℓ) = (ρ, V )⊗ Res

SO(3)
SO(2)[(D

ℓ, V ℓ)].

The proof of this statement is given in Appendix F. Note that similar to [18, 6] the tensor product
structure of the SO(2) and SO(3) irreducible representations determine the allowed input and output
representations of the matrix valued harmonic coefficients Fℓ(r).

Figure 2: Left: Decomposition of the restricted representation Res
SO(3)
SO(2) of SO(3)-irreducibles

(Dℓ,Wℓ) ∈ ŜO(3) into SO(2)-irreducibles (ρk, Vk) ∈ ŜO(2). Not every SO(2)-representation
can be realized as the restriction of a SO(3)-representation. Right: Decomposition of the in-
duced representation Ind

SO(3)
SO(2) for SO(2)-irreducibles (ρk, Vk) ∈ ŜO(2) into SO(3)-irreducibles

(Dℓ,Wℓ) ∈ ŜO(3). Not every SO(3)-representation can be realized as the induction of a SO(2)-
representation.

4.3 Including Non-Linearities

In section 4.2, we considered the most general linear maps that satisfied the generalized equivariance
constraint. Adding non-linearities should allow for more expressiveness. Understanding non-
linearities between equivariant layers is still an active area of research [39–42].

One way to include non-linearity is to apply standard SO(3) non-linearities after the linear induction
layer. After applying the linear mapping described in C, we apply an additional spherical non-linearity
[43] to the signal on S2. This is the method we employ for the results presented in 6.2. As shown in
G it is also possible to include tensor-product based non-linearity analogous to the results of [18, 6].

5 Theory

5.1 Universal Property

In section 4 we showed how the restriction representation arises naturally when trying to construct
SO(3)-equivariant architectures for image data. However, there is no apriori choice of the hidden
SO(3) representation. We show that with this choice, our construction satisfies a universal property,
and is unique up to isomorphism [44].

We have the following universal property of induced representations, as stated in [37]:
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Theorem 2. Let H ⊆ G. Let (ρ, V ) be any H-representation. Let IndGH(ρ, V ) be the induced
representation of (ρ, V ) from H to G. Then, there exists a unique H-equivariant linear map
Φρ : V → IndGHV such that for any G-representation (σ,W ) and any H-equivariant linear map
Ψ : V → W , there is a unique G-equivariant map Ψ↑ : IndG

HV → W such that the diagram 3 is
commutative.

(ρ, V ) IndGH(ρ, V )

(σ,W )

Φρ

Ψ
Ψ↑

Figure 3: Commutative Dia-
gram for Uniqueness Property
of Induced Representations.

Let (ρ, V ) be a H-representation and let (σ,W ) be a G-
representation. Let Ψ : V → W where Ψ is an intertwiner of
a the H-representation and the restriction of the G-representation to
an H-representation so that

∀h ∈ H, Ψρ(h) = ResGH [σ](h)Ψ

so that Ψ ∈ HomH [(ρ, V ),ResGH(σ,W )]. The universal property of
the induced representation allows us to write any such Ψ in a canon-
ical form. Specifically, as illustrated in 5.1, we can always uniquely
decompose Ψ = Ψ↑ ◦ Φρ where Ψ↑ ∈ HomG[IndGH(ρ, V ), (σ,W )]

and Ψρ : V → IndGHV is (σ,W ) independent.

(ρ, V ) (σ,W )

(ρ, V ) (σ,W )

Ψ

ρ(h) σ(g)σ(h)

Ψ

∼=

(ρ, V ) (σ,W )

IndGH(ρ, V )

IndGH(ρ, V )

(ρ, V ) (σ,W )

Φρ

Ψ

ρ(h) σ(g)σ(h)

Ψ↑

[IndG
H ρ](h) [IndG

H σ](g)

Ψ↑Φρ

Ψ

Figure 4: Factorization Identity for Universal Property of Induced Representations

Convolutional neural networks are compositions of linear functions, interleaved with non-linearities.
At each layer of the network, we have a set of functions from a homogeneous space of a group into
some vector space [6]. Let XH

i be a set of homogeneous spaces of the group H and let XG
j be a set

homogeneous spaces of the group G. Let V H
i and WG

j be a set of vector spaces. Then, consider the
function spaces

FH
i = { f | f : XH

i → V H
i }, FG

j = { f ′ | f ′ : XG
j → WG

j }
The group H acts on the homogeneous spaces XH

i and the group G acts on the homogeneous spaces
XG

j so that the function spaces FH
i and FG

j form representations of H and G, respectively

Suppose we wish to design a downstream G-equivariant neural network that accepts as signals
functions that live in the vector space FH

0 and transform in the ρ0 representation of H . Thus,
(ρ0,FH

0 ) is a H-representation, but not necessarily a G-representation. At some point, in the
architecture, a layer FH

i must be H equivariant on the left and both H and G-equivariant on the right.
Let us call the layer that is both H and G-equivariant FG

1 .

... (ρi,FH
i ) (σ1,FG

1 ) ...

... (ρi,FH
i ) (σ1,FG

1 ) ...

Φi−1

ρi(h)

Ψ

σ1(g)

Ψ1

Φi−1 Ψ Ψ1

∼=

... (ρi,FH
i ) IndGH [(ρi,FH

i )] (σ1,FG
1 ) ...

... (ρi,FH
i ) IndGH [(ρi,FH

i )] (σ1,FG
1 ) ...

Φi−1

ρi(h)

Φρi

IndGH [ρi]

Ψ↑

σ1(g)

Ψ1

Φi−1 Φρi Ψ↑ Ψ1

Figure 5: Factorization of Generic Architecture Using Universal Property of Induced Representation.
Any network that has input layer (ρi,FH

i ) that is H-equivariant and output layer (σG
1 ,FG

1 ) that is
G-equivariant can be factorized in terms of the induced representation. The map Ψ = Ψ↑ ◦ Φσi

where Ψ↑ is G-equivariant and Φσi
is H-equivariant.
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Suppose that Ψ is an intertwiner between (ρi,FH
i ) and (σ1,FG

1 ). Using the factor-
ization property of induced representations 5.1, there is a canonical basis of the space
HomH [(ρi,FH

i ),ResGH [(σ1,FG
1 )]] ∼= HomG[Ind

G
H [(ρi,FH

i )], (σ1,FG
1 )] and we may write Ψ

uniquely as Ψ = Ψ↑ ◦ Φρ where Φρ is an H-equivariant map and Ψ↑ is a G-equivariant map. Thus,
any boundary between H and G layers can be written as an H-equivariant layer between (ρi,FH

i )

and IndGH [(ρi,FH
i )] followed by a G-equivariant layer between IndGH [(ρi,FH

i )] and (σ1,FH
1 ). In

this way, induction is all you need and all possible latent G-equivariant architectures can be written
in terms of the induction representation.

6 Experiments

6.1 Datasets & Evaluation Metrics

We evaluate the performance of our method on three single-object pose estimation datasets. These
datasets require making predictions in SO(3) from single 2D images. SYMSOL [14] consists of a
set of images of marked and unmarked platonic solids, taken from different vantage points. Training
data is annotated with viewing direction. Some objects have symmetries so that there are multiple
equivalent viewing directions. which requires learning distributions over poses. PASCAL3D+ [13]
is a popular benchmark for object pose estimation composed of real images of objects from twelve
categories. This dataset is challenging to do the large variation in object appearances and the presence
of novel object instances in the test set. To be consistent with the baselines, we augment the training
data with synthetic renderings[45] and evaluate performance on the PASCALVOC_val set. For more
details on the benchmark datasets and additional numerical experiments, see B.

Figure 6: Diagram of an Equivariant Image
to Sphere Convolution. At each unit vector
n̂ ∈ S2 the kernel κ(n̂ : p) is dependent on
the image point p = (x, y) ∈ R2. Equiv-
ariance constraints put restrictions on the al-
lowed form of κ(n̂ : p). Similar to a standard
convolution, the kernel κ has a user defined
receptive field.

When a single ground truth rotation label is provided, we
evaluate the method using the geodesic distance between
the predicted and ground truth rotation matrices, reported
as either median rotation error or accuracy at a given ro-
tation error threshold. For SYMSOL, which provides the
full set of equivalent rotations associated with an image,
we measure the accuracy of the learned pose distribution
using average log likelihood. This is also the accuracy
metric used in [12].

6.2 Implementation & Training Details

For the results presented in 6, we use a ResNet encoder
with weights pre-trained on ImageNet. With 224x224
images as input, this generates a 7x7 feature map with
2048 channels.

The filters in the induction layer were instantiated using
the e2nn [38] package. The maximum frequency was
chosen to be ℓ = 6. The output of the induction layer
was chosen to be a 64-channeled S2 signal with fibers
transforming in the trivial representation of SO(3). After
the induction layer, a spherical convolution operation is
performed using a filter that is parameterized in the Fourier
domain, which generates an 8-channel signal over SO(3).
A spherical non-linearity is applied by mapping the signal
to the spatial domain, applying a ReLU, then mapping
back to Fourier domain. One final spherical convolution
with a locally supported filter is performed to generate a
one-dimensional signal on SO(3). The output signal is

queried using an SO(3) HEALPix grid (recursion level 3 during training, 5 during evaluation) and
then normalized using a softmax following [14]. S2 and SO(3) convolutions were performed using
the e3nn [43] package. The network was initialized and trained using PyTorch [46].
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In order to create a fair comparison to existing baselines, batch size(=64), number of epochs(=40),
optimizer(=SGD) and learning rate schedule(=StepLR) were chosen to be the same as that of [12].
Numerical experiments were implemented on NVIDA P-100 GPUs.

6.3 Comparison to Baselines

We compare our method’s performance to competitive pose estimation baselines. We include
regression methods, [29, 30, 33], that perform well on datasets where objects have a single valid pose
(e.g. are non-symmetric or symmetry is disambiguated in labels). We also baseline against methods
that model pose with parametric families of distributions, [35, 47, 34, 36], an implicit model [14],
and the Fourier basis of SO(3) [12]. To make the comparison fair, all methods use the same-sized
ResNet backbone for each experiment, and we report results as stated in the original papers where
possible.

SYMSOL Results The performance on the SYMSOL dataset is reported in Table 1. Our method
achieves highest average log likelihood on SYMSOL I. Importantly, we observe a significant improve-
ment over Klee et al. [12] on all objects, which indicates that our induction layer is more effective
than its hand-designed orthographic projection. On SYMSOL II, our method slightly underperforms
Murphy et al. [14], which has much higher expressivity on the output since it is an implicit model.
However, we demonstrate that our approach, which preserves the symmetry present in the images, is
better with less data, as shown in Table 2.

Table 1: Average log likelihood (the higher the better ↑) on SYMSOL I & II. Per [14], a single model
is trained on all classes in SYMSOL I and a separate model is trained on each class in SYMSOL II.

SYMSOL I (↑) SYMSOL II (↑)
avg cone cyl tet cube ico avg sphX cylO tetX

Deng et al. [34] -1.48 0.16 -0.95 0.27 -4.44 -2.45 2.57 1.12 2.99 3.61
Prokudin et al. [35] -1.87 -3.34 -1.28 -1.86 -0.50 -2.39 0.48 -4.19 4.16 1.48
Gilitschenski et al. [48] -0.43 3.84 0.88 -2.29 -2.29 -2.29 3.70 3.32 4.88 2.90
Murphy et al. [14] 4.10 4.45 4.26 5.70 4.81 1.28 7.57 7.30 6.91 8.49
Klee et al. [12] 3.41 3.75 3.10 4.78 3.27 2.15 4.84 3.74 5.18 5.61
Ours 5.11 4.91 4.22 6.10 5.73 4.69 6.20 7.10 6.01 5.62

Table 2: Average log likelihood on SYMSOL I & II with 10% of training data.
10% SYMSOL I (↑) 10% SYMSOL II (↑)

avg cone cyl tet cube ico avg sphX cylO tetX

Murphy et al. [14] -7.94 -1.51 -2.92 -6.90 -10.04 -18.34 -0.73 -2.51 2.02 -1.70
Klee et al. [12] 2.98 3.51 2.88 3.62 2.94 1.94 3.61 3.12 3.87 3.84
Ours 3.01 3.63 3.01 3.53 3.02 1.91 3.54 2.88 3.71 4.04

PASCAL3D+ Results Our method achieves state-of-the-art performance on PASCAL3D+ with an
average median rotation error of 9.2 degrees, as reported in Table 3. Even though object symmetries
are consistently disambiguated in the labels, modeling pose as a distribution is beneficial for noisy
images where there is insufficient information to resolve the pose exactly. Because our induction
layer produces representations on the Fourier basis of SO(3), it naturally allows for capturing this
uncertainty as a distribution over SO(3). While both our method and [12] leverage SO(3) equivariant
layers to improve generalization, we find our method achieves higher performance. We believe
our induction layer is more robust to variations in how the images are rendered/captured, which is
important for PASCAL3D+, since the data is aggregated from many sources. Moreover, our method
does not restrict features to the hemisphere, which could be beneficial for objects, like bikes and
chairs, that do not fully self-occlude their backsides.

8



Table 3: Rotation prediction on PASCAL3D+. First column is the average over all categories.
Median rotation error in degrees (↓)

avg plane bike boat bottle bus car chair table mbike sofa train tv

Mohlin et al. [47] 11.5 10.1 15.6 24.3 7.8 3.3 5.3 13.5 12.5 12.9 13.8 7.4 11.7
Prokudin et al. [35] 12.2 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0
Tulsiani and Malik [29] 13.6 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4
Mahendran et al. [30] 10.1 8.5 14.8 20.5 7.0 3.1 5.1 9.5 11.3 14.2 10.2 5.6 11.7
Liao et al. [33] 13.0 13.0 16.4 29.1 10.3 4.8 6.8 11.6 12.0 17.1 12.3 8.6 14.3
Murphy et al. [14] 10.3 10.8 12.9 23.4 8.8 3.4 5.3 10.0 7.3 13.6 9.5 6.4 12.3
Klee et al. [12] 9.8 9.2 12.7 21.7 7.4 3.3 4.9 9.5 9.3 11.5 10.5 7.2 10.6
Yin et al. [36] 9.4 8.6 11.7 21.8 6.9 2.8 4.8 7.9 9.1 12.2 8.1 6.9 11.6
Ours (ResNet-50) 10.2 9.2 13.1 30.6 6.7 3.1 4.8 8.7 5.4 11.6 11.0 5.8 10.6
Ours 9.2 9.3 12.6 17.0 8.0 3.0 4.5 9.4 6.7 11.9 12.1 6.9 9.9

7 Conclusion

In conclusion, we have argued that any network that learns a three-dimensional model of the world
from two dimensional images must satisfy certain consistency properties. We have shown how
these consistency properties translate into an SO(2)-equivariance constraint. Using the induced
representation we have derived an explicit form for any neural networks that satisfies said consistency
constraint. We have proposed an induction/restriction layer, which is learnable network layer that
satisfies the derived consistency equation. We have shown that the induction layer satisfies both a
completeness property and universal property and, up to isomorphism, is unique. Furthermore, we
have shown that the methods of [12, 10, 11] can be realized as specific instances of the induction
layer.

The framework that we have developed is general and can be applied to other computer vision
problems with different symmetries. For example, as was noted in [49], the cryogenic electronic
microscopy orientation estimation problem has a latent SO(3) symmetry but a manifest SO(2)×Z2

∼=
O(2) (as opposed to an SO(2)) symmetry. With a slight modification H, the results presented in the
main text allow for the construction of an induction layer that leverages this observation.

Future Work In many structure from motion tasks, one has access to multiple images of the
same object, taken at either known or unknown vantage points. Our work considers only single
view pose-estimation. A natural generalization of our work is to include stereo measurements into
the induced/restricted representation framework. [50, 51] use transformer architectures to learn
models of three dimensional objects from two-dimensional images. Another natural extension of
our work would be to include transformers into the framework presented here, which only applies to
convolutional networks.

In deep learning, we often wish to construct a neural network that respects a latent symmetry G that
does not have action on the input data space. We have show how the induced representation can
be used to construct latent G-equivariant neural networks. Our work provides a systematic way to
construct neural architectures that accept any format of inputs and respect the latent symmetries of
the problem.
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A Notation and Preliminaries

We establish some notation and review some elements of representation theory. For a comprehensive
review of representation theory, please see [52, 53]. The identity element of any group G will be
denoted as e. A subgroup H of G will be denoted as H ⊆ G. We will always work over the field R
unless otherwise specified.

A.0.1 Group Actions

Let Ω be a set. A group action Φ of G on Ω is a map Φ : G× Ω → Ω which satisfies

Identity: ∀ω ∈ Ω, Φ(e, ω) = ω (3)
Compositionality: ∀g1, g2 ∈ G, ∀ω ∈ Ω, Φ(g1g2, ω) = Φ(g1,Φ(g2, ω))

We will often suppress the Φ function and write Φ(g, ω) = g · ω.

Ω Ω′

Ω Ω′

Φ(g,·)

Ψ

Φ′(g,·)

Ψ

Figure 7: Commutative Diagram For G-equivariant function: Let Φ(g, ·) : G× Ω → Ω denote the
action of G on Ω. Let Φ′(g, ·) : G×Ω′ → Ω′ denote the action of G on Ω′. The map Ψ : Ω → Ω′ is
G-equivariant if and only if the following diagram is commutative for all g ∈ G.

Let G have group action Φ on Ω and group action Φ′ on Ω′. A mapping Ψ : Ω → Ω′ is said to be
G-equivariant if and only if

∀g ∈ G,∀ω ∈ Ω, Ψ(Φ(g, ω)) = Φ′(g,Ψ(ω)) (4)

Diagrammatically, Ψ is G-equivariant if and only if the diagram A.0.1 is commutative.

A.0.2 Induced and Restricted Representations

Let V be a vector space over C. A representation (ρ, V ) of G is a map ρ : G → Hom[V, V ] such that

∀g, g′ ∈ G, ∀v ∈ V ρ(g · g′)v = ρ(g) · ρ(g′)v

Restricted Representation Let H ⊆ G. Let (ρ, V ) be a representation of G. The restricted
representation of (ρ, V ) from G to H is denoted as ResGH [(ρ, V )]. Intuitively, ResGH [(ρ, V )] can be
viewed as (ρ, V ) evaluated on the subgroup H . Specifically,

∀v ∈ V, ResGH [ρ](h)v = ρ(h)v (5)

Note that the restricted representation and the original representation both live on the same vector
space V .

Induced Representation The induction representation is a way to construct representations of a
larger group G out of representations of a subgroup H ⊆ G. Let (ρ, V ) be a representation of H .
The induced representation of (ρ, V ) from H to G is denoted as IndGH [(ρ, V )]. Define the space of
functions

F = { f | f : G → V, ∀h ∈ H, f(gh) = ρ(h−1)f(g) }

Then the induced representation is defined as (π,F) = IndGH [(ρ, V )] where the induced action π
acts on the function space F via

∀g, g′ ∈ G, ∀f ∈ F (π(g) · f)(g′) = f(g−1g′)
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Induced Representation for Finite Groups There is also an equivalent definition of the induced
representation for finite groups that is slightly more intuitive [54]. Let G be a group and let H ⊆ G.
The set of left cosets of G/H form a partition of G so that

G =

|G/H|⋃
i=1

giH

where {gi}|G/H|
i=1 are a set of representatives of each unique left coset. Note that the choice of left

coset representatives is not unique. Now, left multiplication by the element g ∈ G is an automorphism
of G. Left multiplication by g ∈ G must thus permute left cosets of G/H so that

∀g ∈ G, g · gi = gjg(i)hi(g)

where jg : {1, 2, ...,m} → {1, 2, ...,m} ∈ Sm is a permutation of left coset representatives. The
hi(g) ∈ H is an element of subgroup H . The map jg(i) and group element hi(g) ∈ H satisfy a
compositionality property. Specifically, we have that

∀g, g′ ∈ G, jg′ ◦ jg = jg′g, hi(g
′g) = hjg(i)(g

′) · hi(g)

which can be seen by acting on the left cosets with g followed by g′ versus acting on the left cosets
with g′g. Note that

e · gi = gi · e = gje(i)hi(e)

holds so je = e and hi(e) = e holds. Now, let (ρ, V ) be a representation of the group H . Let us
define the vector space W as

W =

|G/H|⊕
i=1

giV(i)

where the (standard albeit somewhat confusing) notation giV(i) denotes an independent copy of the
vector space V . This notation is simply a labeling and all copies of giV H

(i) are isomorphic to V H ,

V ∼= g1V1
∼= g2V2

∼= ... ∼= g|G/H|V|G/H|

so that the space W ∼=
⊕|G/H|

i=1 V is just |G/H| independent copies of V . The induced representation
lives on this vector space, (π,W ) = IndGH [(ρ, V )]. The induced action π = IndGH ρ acts on the
vector space W via

∀g ∈ G, ∀w =

|G/H|∑
i=1

givi ∈ W, π(g) · w =

|G/H|∑
i=1

σ(hi(g))vjg(i) ∈ W

where vi ∈ V(i) is in the i-th independent copy of the vector space V . Using the compositionality prop-
erty of jg and hi(g), it is easy to see that this is a valid group action so that (π,W ) = IndGH [(ρ, V )]
is a valid representation. Note that the induced action π acts on the vector space W by permuting and
left action by the H-representation ρ(h). There is a natural geometric interpretation of the induced
representation which we discuss in a later section K.

A.0.3 G-Intertwiners

Let (ρ, V ) and (σ,W ) be two G-representations. The set of all G-equivariant linear maps between
(ρ, V ) and (σ,W ) will be denoted as

HomG[(ρ, V ), (σ,W )] = { Φ | Φ : V → W, s.t. ∀g ∈ G, Φ(ρ(g)v) = σ(g)Φ(v) }
HomG is a vector space over C. A linear map Φ ∈ HomG[(ρ, V ), (σ,W )] is said to intertwine
the representations (ρ, V ) and (σ,W ). Pictorially, an intertwiner Φ is a map that makes the A.0.3
diagram commutative.

Figure 8: Commutative Diagram For G-intertwiner. The map Ψ ∈ HomG[(ρ, V ), (σ,W )] if and
only if the following diagram is commutative for all g ∈ G.

Computing a basis for the vector space HomG[(ρ, V ), (σ,W )] is one of the triumphs of classical
group theory [53, 52]. The weights of Steerable CNNs are intertwiners between representations [9].

14



A.0.4 (H ⊆ G)-Intertwiners

We will also consider another definition of intertwiners between different groups. Let H ⊆ G. Let
(ρ, V ) be a H-representation. Let (σ,W ) be a G-representation. We define the vector space of
intertwiners of (ρ, V ) and (σ,W ) as

HomH [(ρ, V ),ResGH [(σ,W )]] = { Φ | Φ : V → W, s.t. ∀h ∈ H, Φ(ρ(h)v) = σ(h)Φ(v) }

We say that a linear map Φ : V → W is an (H ⊆ G)-intertwiner of the H-representation (ρ, V ) and
the G-representation (σ,W ) if Φ ∈ HomH [(ρ, V ),ResGH [(σ,W )]]. The induction and restriction
operations are adjoint functors [37]. By the Frobinous reciprocity theorem [37],

HomH [(ρ, V ),ResGH [(σ,W )]] ∼= HomG[Ind
G
H [(ρ, V )], (σ,W )]

and so for every Φ : V → W which intertwines (ρ, V ) and ResGH [(σ,W )] over H there is a unique
Φ↑ : IndGH [V ] → W that intertwines IndGH [(ρ, V )] and (σ,W ) over G. Not every H-representation
can be realized as the restriction of a G-representation. Thus, the universe of (H ⊆ G)-intertwiners is
a proper subset of the universe of H-intertwiners. As explained in the main text, (SO(2) ⊆ SO(3))-
intertwiners arise naturally when trying to design SO(3)-equivarient neural networks for image
data.

(ρ, V ) (σ,W )

(ρ, V ) (σ,W )

ρ(h)

Φ

σ(h) σ(g)

Φ

Figure 9: Commutative Diagram For (H ⊆ G)-intertwiner. Φ : V → W . The map
Φ ∈ HomH [(ρ, V ),ResGH [(σ,W )]] ∼= HomG[Ind

G
H [(ρ, V )], (σ,W )] if and only if the following

diagram is commutative for all h ∈ H . Note that the group G also has σ(g) action on the vector
space W .

A map Φ : V → W is a (H ⊆ G)-intertwiner if and only if the diagram in A.0.4 is commutative.

B Additional Experiments

ModelNet10-SO(3) Results The first dataset, ModelNet10-SO(3) [33], is composed of rendered
images of synthetic, untextured objects from ModelNet10 [55]. The dataset includes 4,899 object
instances over 10 categories, with novel camera viewpoints in the test set. Each image is labelled
with a single 3D rotation matrix, even though some categories, such as desks and bathtubs, can have
an ambiguous pose due to symmetry. For this reason, the dataset presents a challenge to methods that
cannot reason about uncertainty over orientation.

ModelNet10-SO(3) Results

Table 4: Rotation prediction on ModelNetSO(3). First column is the average over all categories.
Median rotation error in degrees (↓)

avg bathtub bed chair desk dresser monitor stand sofa table toilet

Mohlin et al. [47] 17.1 89.1 4.4 5.2 13.0 6.3 5.8 13.5 4.0 25.8 4.0
Prokudin et al. [35] 49.3 122.8 3.6 9.6 117.2 29.9 6.7 73.0 10.4 115.5 4.1
Deng et al. [34] 32.6 147.8 9.2 8.3 25.0 11.9 9.8 36.9 10.0 58.6 8.5
Liao et al. [33] 36.5 113.3 13.3 13.7 39.2 26.9 16.4 44.2 12.0 74.8 10.9
Brégier [32] 39.9 98.9 17.4 18.0 50.0 31.5 18.7 46.5 17.4 86.7 14.2
Zhou et al. [31] 41.1 103.3 18.1 18.3 51.5 32.2 19.7 48.4 17.0 88.2 13.8
Murphy et al. [14] 21.5 161.0 4.4 5.5 7.1 5.5 5.7 7.5 4.1 9.0 4.8
Klee et al. [12] 16.3 124.7 3.1 4.4 4.7 3.4 4.4 4.1 3.0 7.7 3.6
Ours 17.8 123.7 4.6 5.5 6.9 5.2 6.1 6.5 4.5 12.1 4.9

The performance on the ModelNet dataset is reported in Table 4. Our induction layer outputs signals
on S2, and naturally allows for capturing uncertainty as a distribution over SO(3). Both our method
and [12] use equivariant layers to improve generalization but our method slightly under-performs
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[12] on the ModelNet dataset. ModelNet-10 is a synthetic dataset consisting of totally opaque objects
and it seems that the image formation model used in [12] is a good approximation to the true image
formation model.

C Image to R3 × S2 for 6DOF-Pose Estimation

The goal in 6DOF-pose estimation is to estimate the location of an object in three-dimensional
space and the orientation of said object. Orientation estimation is a sub-problem of pose estimation
where the goal is to estimate just the orientation of an object and disregard the objects position in
three-dimensional space.

Let us see how induced and restriction representations arise naturally in the design of neural architec-
tures for 6DOF-pose estimation. Let V and V ↑ be vector spaces.

Image inputs We first describe F the space of image input signals. Let F be the vector space of all
V -valued signals defined on the plane

F = { f | f : R2 → V }.
Elements of F are referred to as SE(2)-steerable feature fields [20].

The group SE(2) = R2 ⋊ SO(2) of 2D translations and rotations acts on F via representation π.
Each h ∈ SE(2) has a unique factorization h = h̄hc where h̄ ∈ R2 is a translation and hc ∈ SO(2)
is a rotation. Then π is defined

r ∈ R2, ∀f ∈ F , h ∈ SE(2), π(h) · f(r) = ρ(hc)f(h
−1r)

where (ρ, V ) is an SO(2)-representation describing the transformation of the fibers of f and (π,F) =

Ind
SE(2)
SO(2)[(ρ, V )] so that (π,F) gives a representation of the group SE(2) [9].

6DoF Pose outputs In pose estimation tasks, the output of our neural network will be functions
from R3 × S2 into the vector space V ↑. Let F↑ be the vector space of all such outputs defined as

F↑ = { f | f : R3 × S2 → V ↑ }

The group SE(3) = R3 ⋊ SO(3) acts on the vector space F↑ via

∀f↑ ∈ F↑, ∀(p, n̂) ∈ R3 × S2, ∀g = ḡgc ∈ SE(3), π↑(g) · f↑(p, n̂) = ρ↑(gc)f
↑(g−1p, g−1

c n̂)

where ρ↑(gc) is a representation of SO(3). Elements of F↑ are referred to as SE(3)-steerable feature
fields [20].

Analogous to the argument presented in the main text. We would like to characterize all maps from
F to F↑ that preserve SE(2)-equivarience. Consider the space of linear maps Φ : F → F↑ that
intertwine (π,F) and (π↑,F↑). The map Φ : F → F↑ must satisfy the relation

∀h ∈ SE(2), ∀f ∈ F , Φ(π(h) · f) = Res
SE(3)
SE(2)[π

↑](h) · Φ(f)

where Res
SE(3)
SE(2)[π

↑] is the restriction of the SE(3)-representation (π↑,F↑) to a SE(2) subgroup.

C.0.1 Kernel Constraint for Image to 6DoF Pose

The most general linear map Φ : F → F↑ between (π,F) and (π↑,F↑) can be written as

∀(p, n̂) ∈ R3 × S2, [Φ(f)](p, n̂) =

∫
r∈R2

dr κ(p, n̂ : r)f(r)

where κ : (R3 × S2)× R2 → Hom[V, V ↑]. Let us enforce the (H ⊆ G)-equivarience condition

∀h ∈ SE(2), π↑(h) · Φ(f) = Φ(π(h) · f)
This constraint places a restriction on the allowed space of kernels. We have that

∀h ∈ SE(2), Φ[π(h) · f ] =
∫
r∈R2

dr κ(p, r)[π(h) · f(r)] =
∫
r∈R2

dr κ(p, n̂ : r)ρ(hc)f(h
−1r)
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Now, making the change of variables r → hr gives

∀h ∈ SE(2), Φ[π(h) · f ] =
∫
r∈R2

dr κ(p, n̂ : h · r)ρ(hc)f(r)

Now, by assumption Φ(f) ∈ (π↑,F↑) so

∀h ∈ SE(2), π↑(h) · Φ(f) =
∫
r∈R2

dr ρ↑(hc)κ(h
−1p, h−1n̂ : r)f(r)

Thus, the kernel κ satisfies the constraint

∀h ∈ SE(2), ρ↑(hc)κ(h
−1 · p, h−1n̂ : r) = κ(p, n̂ : h · r)ρ(hc)

We can write this in the more compact form as

∀h ∈ SO(2), κ(h · p, h · n̂ : h · r) = ρ↑(hc)κ(p, n̂ : r)ρ(h−1
c )

This constraint is linear and solutions κ form a vector space over R. We reduce this constraint to the
steerable kernel constraint considered in [7, 21, 9, 8].

First, note that the SE(2) action does not mix the z-component of [Φ(f)](n̂, x, y, z). Thus, the most
general linear map can be written as

[Φ(f)](n̂, x, y, z) =

∫
(rx,ry)∈R2

drxdry κ(n̂, x− rx, y − ry, z)f(rx, ry)

where for each fixed z, the kernel κ is an intertwiner of ResSO(3)
SO(2)[(ρ

↑, V ↑)] and (ρ, V ) and satisfies

∀h ∈ SO(2), κ(h · n̂, h · r : z) = ρ↑(h)κ(n̂, r : z)ρ(h−1)

Figure 10: Right: Diagram of an Equivariant Image to Sphere Convolution. At each point p =
(x, y, z) ∈ R3 and each unit vector n̂ ∈ S2 the kernel κ(n̂, p : p′) is dependent on the image point
p′ = (x′, y′) ∈ R2. Equivarience constraints put restrictions on the allowed form of κ(n̂, p : p′)
C.0.1. Similar to a standard convolution, the kernel κ has a user defined receptive field.

Let simplify this constraint further. The set of spherical harmonics form an orthonormal basis for
functions on S2. We can expand the kernel κ as

κ(n̂, r : z) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (r, z)Y

k
ℓ (n̂)

where F k
ℓ (r, z) : R2 × R → Hom[V, V ↑]. The kernel constraint places additional restrictions on the

set of allowed F k
ℓ (r, z). We have that,

∀h ∈ SO(2), κ(h · n̂, h · r : z) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (h · r, z)Y k

ℓ (h · n̂) =
∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (h · r, z)Dℓ

kk′(h)Y k′

ℓ (n̂)
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and,

∀h ∈ SO(2), ρ↑(h)κ(n̂, z : r)ρ(h−1) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

ρ↑(h)F k
ℓ (r, z)ρ(h

−1)Y k
ℓ (n̂)

Thus, the functions F k
ℓ (r, z) : R2 × R → Hom[V, V ↑] must satisfy,

∀h ∈ SO(2), ρ↑(h)F k
ℓ (r, z)ρ(h

−1) =

ℓ∑
k′=−ℓ

F k′

ℓ (h · r, z)Dℓ
k′k(h)

Now, the Wigner D-matrices are unitary and the above constraint is equivalent to

∀h ∈ SO(2), F k
ℓ (h · r, z) = ρ↑(h)

+ℓ∑
k′=−ℓ

F k′

ℓ (r, z)ρ(h−1)Dℓ
k′k(h

−1) = ρ↑(h)

+ℓ∑
k′=−ℓ

F k′

ℓ (r, z)[Dℓ
k′k(h)ρ(h)]

−1

Now, let us vectorize the matrix valued functions F k
ℓ (r, z) as

Fℓ(r, z) =
[
F ℓ
ℓ (r, z), F ℓ−1

ℓ (r, z), ... F−ℓ+1
ℓ (r, z), F−ℓ

ℓ (r, z)
]
∈ Hom[V ⊗W ℓ, V ↑]

Let us define the tensor product representation of (ρ, V ) and Res
SO(3)
SO(2)[(D

ℓ,W ℓ)] as

(ρℓ, V ℓ) = (ρ, V )⊗ Res
SO(3)
SO(2)[(D

ℓ,W ℓ)]

which is a SO(2)-representation. Then the functions Fℓ(r) : R2 → Hom[V ⊗W ℓ, V ↑] satisfy the
constraint

∀h ∈ SO(2), Fℓ(h · r, z) = ρ↑(h)Fℓ(r, z)ρ
ℓ(h−1)

For fixed z, this is exactly the constraint on an SO(2)-steerable kernel with input representation
(ρℓ, V ℓ) = (ρ, V ) ⊗ Res

SO(3)
SO(2)[(D

ℓ,W ℓ)] and output representation Res
SO(3)
SO(2)[ρ

↑, V ↑)]. [20, 8]
give a complete classification of kernel spaces that satisfy this constraint. Note that by demanding
that SE(3) has action on the space (π↑,F↑) we have added additional constraints to the set of
allowed kernels. Specifically, instead of mapping arbitrary SO(2)-input representation to arbitrary
SO(2)-output representation, the allowed input and output representations must satisfy additional
constraints. Specifically, not every representation can be realized as the restriction of an SE(3) to
SE(2) representation. The induction and restriction operations of SO(2) ⊂ SO(3) on irreducible
representations are shown in 2.

In practice, once the multiplicities of the input SO(2)-representation and the output SO(3)-
representation are specified, the SO(2)-steerable kernels can be explicitly constructed using nu-
merical programs defined in [20]. To summarize, all equivariant linear maps between a function
f : R2 → V and a function f↑ : R3 × S2 → V ↑ can be written as

f↑(n̂, x, y, z) =

∞∑
ℓ=0

(Fℓ,z ⋆ f)(x, y) · Yℓ(n̂) =

∞∑
ℓ=0

∫
(x′,y′)∈R2

dx′dy′ f(x′, y′)Fℓ,z(x− x′, y − y′) · Yℓ(n̂)

where for each fixed z, Fℓ,z(x, y) is a SO(2)-steerable kernel that takes input representation
(ρℓ, V ℓ) = (ρ, V ) ⊗ Res

SO(3)
SO(2)[(D

ℓ,W ℓ)] to output representation Res
SO(3)
SO(2)[(ρ

↑, V ↑)]. Once the
coefficients of the spherical harmonics

Cℓ(x, y, z) = (Fℓ,z ⋆ f)(x, y) =

∫
(x′,y′)∈R2

dx′dy′ f(x′, y′)Fℓ,z(x− x′, y − y′)

are computed, the resultant function f↑(n̂, x, y, z) =
∑∞

ℓ=0 C
T
ℓ (x, y, z)Y

ℓ(n̂) is defined on a homo-
geneous space of SE(3) and we can utilize SE(3)-steerable CNNs to make predictions about 6DoF
poses [21, 56, 57].

D Plane to Space for Object Reconstruction

Another problem of interest in single view geometric construction is monocular density reconstruction
(also sometimes called monocular depth estimation). The goal in monocular density reconstruction
problems is to build a three-dimensional model of the world given a single two-dimensional images
[58, 59]. Monocular depth reconstruction tasks are of specific interest in endoscopy [60] and
autonomous driving [61, 62].
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Volume Outputs In monocular reconstruction tasks, the output of our neural network will be a
density map which is a function from R3 into a vector space V ↑. Let F↑ be the vector space of all
such outputs,

F↑ = { f | f : R3 → V ↑ }

The group R3 ⋊ SO(3) acts on the vector space F↑ via

∀f↑ ∈ F↑, ∀g ∈ SE(3), π↑(g) · f↑(r) = ρ↑(gc)f
↑(g−1r)

where ρ↑(gc) is a representation of SO(3). F↑ are often refered to as SE(3)-steerable features.
Now, consider the space of linear maps Φ : F → F↑ that intertwine (π,F) and (π↑,F↑). The map
Φ : F → F↑ must satisfy the relation

∀h ∈ SE(2), ∀f ∈ F , Φ(π(h)f) = π↑(h)Φ(f)

by definition of the restricted representation this is equivalent to

∀h ∈ SE(2), ∀f ∈ F , Φ(π(h)f) = ResGH [π↑](h)Φ(f)

where Res
SO(3)
SO(2)[(π

↑,F↑)] is the restriction of the SE(3)-representation (π↑,F↑) to a SE(2) sub-
group.

D.1 Kernel Constraint for Object Reconstruction

Similar to C, the most general linear map between (π,F) and (π↑,F↑) can be written as

∀p ∈ R3, (k · f)(p) =
∫
r∈R2

dr κ(p, r)f(r)

where κ : R3 × R2 → Hom[V, V ↑] satisfies the constraint

∀h ∈ SE(2), ρ↑(hc)κ(h
−1 · p, r) = κ(p, h · r)ρ(hc)

We can write this in the more compact form

∀h ∈ SO(2), κ(h · p, h · r) = ρ↑(hc)κ(p, r)ρ(hc)

Note that the SO(2) action does not mix the z-component of [Φ(f)](x, y, z). Thus, the most general
linear map can be written as

[Φ(f)](x, y, z) =

∫
r∈R2

drxdry κ(x− rx, y − ry, z)f(rx, ry) = (κz ⋆ f)(x, y)

where for each fixed z, the kernel κ is an intertwiner of ResSO(3)
SO(2)[(ρ

↑, V ↑)] and (ρ, V ) and satisfies

∀h ∈ SO(2), κ(g · r, z) = ρ↑(h)κ(r, z)ρ(h−1)

To summarize, a function f : R2 → V can be mapped into a function

f↑(x, y, z) = Φ(f)(x, y, z) =

∫
r∈R2

dr k(x− x′, y − y′, z)f(x′, y′) = [κz ⋆ f ](x, y)

where for fixed z, κz is an SO(2)-steerable kernel with input representation (ρ, V ) and output
representation Res

SO(3)
SO(2)[(ρ

↑, V ↑)].

E Image to SO(3) for Rotation Estimation

Instead of inducing from signals on the plane to signals on the S2 as in 4, we can induce directly
from image to SO(3).

19



Rotation Outputs Let F↑ be the vector space of all SO(3) valued functions

F↑ = { f | f : SO(3) → V ↑ }

The group SO(3) acts on the vector space F↑ via

∀f↑ ∈ F↑, ∀g, g′ ∈ SO(3), π↑(g) · f↑(g′) = ρ↑(g)f↑(g−1g′)

where ρ↑(g) is a representation of SO(3). Now, consider the space of linear maps Φ : F → F↑ that
intertwine (π,F) and (π↑,F↑). The map Φ : F → F↑ must satisfy the relation

∀h ∈ SO(2), ∀f ∈ F , Φ(π(h)f) = Res
SO(3)
SO(2)[π

↑](h)Φ(f) = π↑(h)Φ(f)

where Res
SO(3)
SO(2)[π

↑] is the restriction of the SO(3)-representation (π↑,F↑) to a SO(2) subgroup.

E.1 Kernel Constraint for Image to SO(3)

Using an argument similar to C, the most general linear equivariant map from functions on R2 to
functions on the SO(3) is

∀g ∈ SO(3), [Φ(f)](g) =

∫
(x,y)∈R2

dA κ(g, x, y)f(x, y)

where the map κ : SO(3)× R2 → Hom[V, V ↑]. The kernel κ satisfies

∀h ∈ SO(2), κ(h−1g, h−1r) = ρ↑(h)κ(g, r)ρ(h−1)

The set of Wigner D-matrices form an orthonormal basis for functions on SO(3) and we can uniquely
expand κ as

κ(g, x, y) =

∞∑
ℓ=0

ℓ∑
k,k′=−ℓ

F kk′

ℓ (x, y)Dℓ
kk′(g)

where F kk′

ℓ (x, y) : R2 → Hom[V, V ↑] are matrix valued coefficients. The kernel constraint places
restrictions on the allowed form of F kk′

ℓ (x, y). Let us define the SO(2)-representations

(ρℓ, Vℓ) = (ρ, V )⊗ Res
SO(3)
SO(2)[(D

ℓ,W ℓ)], (ρ↑ℓ , V
↑
ℓ ) = Res

SO(3)
SO(2)[(ρ

↑, V ↑)⊗ (Dℓ,W ℓ)]

Then, the kernel constraint holds only if

∀h ∈ SO(2), ∀r ∈ R2, F ℓ
kk′(h · r) = ρ↑(h)[

ℓ∑
nn′=−ℓ

Dℓ
kn(h)F

ℓ
nn′(r)Dℓ

n′k′(h−1)]ρ(h−1)

We can reduce this constraint to a standard SO(2)-kernel constraint by considering the Fℓ(r)kk′ =
F ℓ
kk′ as a larger matrix. Then, the matrixed Fℓ(x, y) : R2 → Hom[V ⊗W ℓ, V ↑⊗W ℓ] are constrained

to satisfy

∀h ∈ SO(2), Fℓ(h · r) = ρ↑ℓ (h)Fℓ(r)ρℓ(h
−1)

so that each Fℓ(x, y) is an SO(2)-steerable kernel with input representation (ρℓ, Vℓ) = (ρ, V ) ⊗
Res

SO(3)
SO(2)[(D

ℓ,W ℓ)] and output representation (ρ↑ℓ , V
↑
ℓ ) = Res

SO(3)
SO(2)[(ρ

↑, V ↑) ⊗ (Dℓ,W ℓ)]. The
type of Fℓ is determined by the Clebsch-Gordon coefficients and the branching/induction rules of
SO(2) and SO(3).

E.2 Ablation Study: Image to S2 vs Image to SO(3)

We rerun the experiments in the main text using an induction layer that maps images directly to
SO(3). The direct induction to SO(3) slightly outperforms the induction to S2 on the ModelNet
dataset.
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Table 5: Rotation prediction on ModelNetSO(3). First column is the average over all categories.
Median rotation error in degrees (↓)

avg bathtub bed chair desk dresser monitor stand sofa table toilet

S2-Method 17.8 123.7 4.6 5.5 6.9 5.2 6.1 6.5 4.5 12.1 4.9
SO(3)-Method 17.3 117.3 4.3 5.6 6.8 5.2 5.8 5.8 6.3 11.8 4.3

On both the SYMSOL and PASCAL3D+ datasets, the induction to S2 followed by a standard
spherical convolution outperform the direction induction to SO(3) by a slight margin.

Table 6: Average log likelihood (the higher the better ↑) on SYMSOL I & II. Per [14], a single model
is trained on all classes in SYMSOL I and a separate model is trained on each class in SYMSOL II.

SYMSOL I (↑) SYMSOL II (↑)
avg cone cyl tet cube ico avg sphX cylO tetX

S2-Method 5.11 4.91 4.22 6.10 5.73 4.69 6.20 7.10 6.01 5.62
SO(3)-Method 5.09 5.01 4.25 6.20 5.67 4.35 6.19 7.03 6.10 5.49

Table 7: Rotation prediction on PASCAL3D+. First column is the average over all categories. The
feature encoder is either ResNet-50 or ResNet-101 head.

Median rotation error in degrees (↓)
avg plane bike boat bottle bus car chair table mbike sofa train tv

S2 (ResNet-50) 10.2 9.2 13.1 30.6 6.7 3.1 4.8 8.7 5.4 11.6 11.0 5.8 10.6
SO(3) (ResNet-50) 10.5 9.4 13.3 30.8 6.5 3.4 4.7 9.0 5.5 11.7 11.1 6.0 10.4
S2 (ResNet-101) 9.2 9.3 12.6 17.0 8.0 3.0 4.5 9.4 6.7 11.9 12.1 6.9 9.9
SO(3) (ResNet-101) 9.7 8.9 14.8 21.3 9.9 3.0 4.7 9.2 5.9 12.8 8.7 6.3 10.3

F Solving the Kernel Constraint For Image to Sphere

Let us solve the kernel constraint presented in the main text 1. The most general linear map
Φ : F → F↑ between (π,F) and (π↑,F↑) can be written as

∀n̂ ∈ S2, [Φ(f)](n̂) =

∫
r∈R2

dr κ(n̂, r)f(r)

where κ : S2 × R2 → Hom[V, V ↑]. Let us enforce the SO(2)-equivarience condition derived in 1.
We have that,

∀h ∈ SE(2), π↑(hc) · Φ(f) = Φ(π(h) · f)

This constraint places a restriction on the allowed space of kernels. We have that, ∀h = h̄hc ∈ SE(2),

Φ[π(h) · f ] =
∫
r∈R2

dr κ(p, r)[π(h) · f(r)] =
∫
r∈R2

dr κ(p, n̂ : r)ρ(hc)f(h
−1r)

Now, making the change of variables r → hr gives

∀h ∈ SE(2), Φ[π(h) · f ] =
∫
r∈R2

dr κ(p, n̂ : h · r)ρ(hc)f(r)

Now, by assumption Φ(f) ∈ (π↑,F↑) so

∀hc ∈ SO(2), π↑(hc) · Φ(f) =
∫
r∈R2

dr ρ↑(hc)κ(h
−1
c n̂ : r)f(r)

Thus, the kernel κ satisfies the linear constraint

∀h ∈ SE(2), ρ↑(hc)κ(h
−1
c n̂ : r) = κ(p, n̂ : h · r)ρ(hc)
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Fiber representations are unitary and left multiplying, we can the kernel constraint in the more
compact form

∀h ∈ SO(2), κ(hc · n̂ : h · r) = ρ↑(hc)κ(n̂ : r)ρ(h−1
c )

We can further reduce this to a standard steerable kernel constraint studied in [7, 21, 9]. The set of
spherical harmonics Y k

ℓ form an orthonormal basis for functions on S2. We can expand the kernel κ
as

κ(n̂, r) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (r)Y

k
ℓ (n̂)

where F k
ℓ (r) : R2 → Hom[V, V ↑]. The kernel constraint places additional restrictions on the set of

allowed F k
ℓ (r). We have that,

∀h = h̄hc ∈ SO(2), κ(hc · n̂, h · r) =
∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (h · r)Y k

ℓ (hc · n̂) =
∞∑
ℓ=0

ℓ∑
k=−ℓ

F k
ℓ (h · r)Dℓ

kk′(hc)Y
k′

ℓ (n̂)

and,

∀h = h̄hc ∈ SO(2), ρ↑(h)κ(n̂ : r)ρ(h−1) =

∞∑
ℓ=0

ℓ∑
k=−ℓ

ρ↑(h)F k
ℓ (r, z)ρ(h

−1)Y k
ℓ (n̂)

Thus, the functions F k
ℓ (r) : R2 → Hom[V, V ↑] must satisfy,

∀h ∈ SO(2), ρ↑(h)F k
ℓ (r)ρ(h

−1) =

ℓ∑
k′=−ℓ

F k′

ℓ (h · r)Dℓ
k′k(h)

Now, the Wigner D-matrices are unitary and the above constraint is equivalent to

∀h ∈ SO(2), F k
ℓ (h · r) = ρ↑(h)

+ℓ∑
k′=−ℓ

F k′

ℓ (r)ρ(h−1)Dℓ
k′k(h

−1) = ρ↑(h)

+ℓ∑
k′=−ℓ

F k′

ℓ (r)[Dℓ
k′k(h)ρ(h)]

−1

Now, let us vectorize the matrix valued functions F k
ℓ (r) as

Fℓ(r) =
[
F ℓ
ℓ (r), F ℓ−1

ℓ (r), ... F−ℓ+1
ℓ (r), F−ℓ

ℓ (r)
]
∈ Hom[V ⊗W ℓ, V ↑]

We define the tensor product representation of (ρ, V ) and Res
SO(3)
SO(2)[(D

ℓ,W ℓ)] as

(ρℓ, V ℓ) = (ρ, V )⊗ Res
SO(3)
SO(2)[(D

ℓ,W ℓ)]

which is a SO(2)-representation. Then the functions Fℓ(r) : R2 → Hom[V ⊗W ℓ, V ↑] satisfy the
constraint

∀h ∈ SO(2), Fℓ(h · r) = ρ↑(h)Fℓ(r)ρ
ℓ(h−1)

This is exactly the constraint on an SO(2)-steerable kernel with input representation (ρℓ, V ℓ) =

(ρ, V )⊗Res
SO(3)
SO(2)[(D

ℓ,W ℓ)] and output representation Res
SO(3)
SO(2)[(ρ

↑, V ↑)]. [20, 8] give a complete
classification of kernel spaces that satisfy this constraint. Note that by enforcing that the output
transforms in an SO(3)-representation, we have added additional constraints to the set of allowed
kernels.

G Including Non-linearities

In section 4.2, we considered the most general linear maps that satisfied the generalized equivariance
constraint. After applying the linear layer described in C, we apply an additional RELU activation to
the signal on S2. It is also possible to use tensor-product based non-linearities analogous to the results
of [18, 6]. In this section, we will consider how to include non-linearities for the general H ⊆ G
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case where G is a compact group. Let (ρ, V ) and (σ,W ) be two irreducible H-representations. The
tensor product representation of (ρ, V ) and (σ,W ) will in general not be irreducible and will break
down into irreducibles as

(ρ, V )⊗ (σ,W ) =
⊕
τ∈Ĥ

cτρσ(τ, Vτ )

where cτρσ counts the number of copies of the H-irreducible (ρ, Vτ ) in the tensor product representa-
tion. Analogous to the Clebsch-Gordon coefficients [8], we can define Cτ

ρ1ρ2
to be the coefficients of

the representation (τ, Vτ ) in the tensor product basis. Specifically, let

|τiτ ⟩ =
d1∑

j1=1

d2∑
j2=1

⟨ρ1j1, ρ2j2|τiτ ⟩︸ ︷︷ ︸
(Cτ

ρ1ρ2
)iτ ,j1j2

|ρ1j1, ρ2j2⟩

with Cτ
ρ1ρ2

we can use the results of [18] to project the tensor product unto a desired output represen-
tation. By choosing the output representation (τ, Vτ ) to be the restriction of an G representation, we
can use tensor products as non-linearites in the induction layer. One difficulty with this procedure is
that it is too computationally expensive for practical use. It may be possible to simplify the complexity
of implementation using the results of [63]. Tensor product based non-linearities for the construction
in 1 is a promising future direction that we leave for future work.

H Generalization to Arbitrary Homogeneous Spaces

The results of C.0.1 can be generalized to any H ⊆ G. Let G be a compact group and let H ⊆ G. Let
Hc ⊆ H and let XH = H/Hc be a homogeneous space of H . Let F(XH) be the set of functions on
XH that transform in representation (ρH , VH) of H ,

F(XH) = { f | f : XH → VH , [h · f ](x) = f(h−1 · x) = ρH(h)f(x) }
Similarly, let Gc ⊆ G and let XG = G/Gc be a homogeneous space of G. Let F(XG) be the set of
functions on XG that transform in the representation (ρG, VG) of G,

F(XG) = { f | f : XG → VG, [g · f ](x) = f(g−1 · x) = ρG(g)f(x) }
We are interested in characterizing all equivariant maps Φ : F(XH) → F(XG) from F(XH) to
F(XG). Now, generalizing the consistency condition derived in 1 to any H ⊆ G, the condition we
seek to enforce is that

∀h ∈ H, Φ(ρH(h) · f) = ρG(h) · Φ(f) (6)

By definition of the restriction representation, 3, this is equivalent to the condition,

∀h ∈ H, Φ(ρH(h) · f) = ResGH [ρG(h)] · Φ(f) (7)

Now, the most general linear map Φ : F(XH) → F(XG) between the function spaces F(XH) and
F(XG) can be written as

Φ(f)(xg) =

∫
xh∈XH

dxh κ(xg, xh)f(xh)

where the kernel κ(xg, xh) : XG ×XH → Hom[VH , VG] must satisfy the relation

∀h ∈ H, k(h · xg, h · xh) = ρG(h)k(xg, xh)ρH(h)

This is a generalization of the steerable kernel constraint first derived in [9] and solved completely in
[8]. Let us simplify this constraint to a more tractable form. Using a result stated in [8], the functions
on any homogeneous space of a compact group can always be decomposed into a sum of harmonic
functions. Let G be a compact group, and X a homogeneous space of G, then for every (ρ, Vρ) ∈ Ĝ,
there exist multiplicities 0 ≤ mρ ≤ dρ such that there exist a orthonormal basis {Y ρ

ij} where the
indices range over ρ ∈ Ĝ and i ∈ {1, 2, ..., dρ}, j ∈ {1, 2, ...,mρ} such that

∀j ∈ 1, 2, ...,mρ, ∀g ∈ G, ∀x ∈ X, Y ρ
ij(g

−1x) =

dj∑
i=1

ρii′(g)Y
ρ
i′j(x)
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Let us denote the harmonic basis functions on the homogeneous space XG as Y σ
ij . Using the

orthogonality of harmonic functions, we can expand the κ uniquely in terms of harmonics as

k(xg, xh) =
∑
σ∈Ĝ

dσ∑
i=1

mσ∑
j=1

Fσ
ij(xh)Y

σ
ij (xg)

where Fσ
ij : XH → Hom[VH , VG] are the matrix valued expansion coefficients of κ. We can simplify

this expression for κ by vectorizing,

k(xg, xh) =
∑
σ∈Ĝ

[Y σ(xg)]
TFσ(xh)

where

Fσ(xh) : XH → Hom[VH , VG ⊗ (Vσ ⊕ Vσ ⊕ ...⊕ Vσ︸ ︷︷ ︸
mσ copies

)]

Let us denote (mσσ,mσVσ) as mσ copies of the G-irreducible (σ, Vσ),

(mσσ,mσVσ) = (σ, Vσ)⊕ (σ, Vσ)⊕ ...⊕ (σ, Vσ)︸ ︷︷ ︸
mσ copies

The kernel constraint places a restriction on the allowed form of the Fσ(xh). We have that

∀h ∈ H, k(h · xg, h · xh) =
∑
σ∈Ĝ

[Y σ(h · xg)]
TFσ(h · xh) =

∑
σ∈Ĝ

[mσσ(h
−1) · Y σ(xg)]

TFσ(h · xh)

Using the identity σ(h−1)T = σ(h), we have that,

∀h ∈ H, k(h · xg, h · xh) =
∑
σ∈Ĝ

[Y σ(xg)]
T [mσσ(h) · Fσ(h · xh)]

Now, using 6, k(h · xg, h · xh) must be equal to ρG(h)k(xg, xh)ρH(h). This is only satisfied if and
only if

∀h ∈ H, F σ(h · xh) = (ρG ⊗mσσ)(h) · Fσ(xh) · ρH(h)

Thus, Fσ is a H-steerable kernel with input representation ρH and output representation ResGH [(ρG⊗
mσσ)]. Note that the Clebsch-Gordon coefficients, the multiplicities mσ and the induction/restriction
coefficients completely determine the output representation type of the H-steerable kernels Fσ .

Figure 11: Left: Restricted representation ResGH from G to H of G-irreducibles (σi,Wi) to
H-irreducibles (ρj , Vj). Not every H-representation can be realized as the restriction of a G-
representation. Right: Induced representation IndGH from H to G of H-irreducibles (ρj , Vj) to
G-irreducibles (σi,Wi). Not every H-representation can be realized as the induction of a H-
representation. The restriction and induction operations are adjoint functors. In general, the restriction
and induction operations are generically sparse. This sparsity places restrictions on what irreducibles
can appear in (H ⊆ G)-equivariant maps.
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I A Completeness Property For Induced Representations

Much of the early work on machine learning focused on proving that sufficiently wide and deep neural
networks can approximate any function within some accuracy [64]. A network that can approximate
any function is said to be expressive. The induced representation satisfies a completeness property.

I.1 Group Valued Functions and Completeness

Can every function f : G → Rc be realized as the induced mapping of functions in RH? We show
that this is the case. We have the following compositional property of induced representations [54]:
Let K ⊆ H ⊆ G. Let (ρ, V ) be any representation of K. Then,

IndGK [(ρ, V )] = IndGH [IndKH [(ρ, V )]] (8)

which states that the induced representation of (ρ, V ) from K to G can be constructed by first
inducing (ρ, V ) from K to H and then inducing from H to G.

Now, choose K = {e} to be the identity element of G. Let (ρ, V ) be the trivial one dimensional
representation of K = {e} with

dimV = 1, ρ(e)v = v

Consider the set of left cosets of H in K = {e}. We have that

H/K = H/{e} = {he|h ∈ G} = H

so the set of coset representatives of H/K is just elements of H . Using a from [54], the induced
representation of (ρ, V ) from K = {e} to H is the left regular representation of H . By the same
argument, the induced representation of (ρ, V ) from K = {e} to G is the left regular representation
of G. Thus,

IndHK [(ρ, V )] = (L,CH), IndGK [(ρ, V )] = (L,CG)

Using the compositionality property of the induced representation (8), we thus have that

(L,CG) = IndGH [(L,CH)]

Thus, the induced representation from H to G of the left regular representation of H is the left regular
representation of G.

(L,CH) (L,CG)

(L,CH) (L,CG)

IndGH [(L,CH)]

L(h) L(g)L(h)

IndGH [(L,CH)]

Figure 12: Commutative Diagram for Completeness Property of Induced Representations. Lh

denotes the left regular action of H on CH . Lg denotes the left regular action of G on CG. The
induced representation of the left regular representation of H is the left regular representation of
G, (L,CG) = IndGH [(L,CH)]. The induced representation makes the diagram commutative. This
should be contrasted with the definition of G-equivarience defined in A.0.1.

Thus, the induction operation maps the space of all group valued functions on H into the space of all
group valued functions on G.

J Irriducibility and Induced and Restricted Representations

Let H be a subgroup of compact group G. We can use the induced representation to map repre-
sentations of H to representations of G and the restricted representation to map representations of
G to representations of H . All representations of H break down into direct sums of irreducible
representations of H . Similarly, all representations of G break down into direct sums of irreducible
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representations of G. Let use denote Ĥ as a set of representatives of all irreducible representations of
H and Ĝ as a set of representatives of all irreducible representations of G,

Ĥ = { (ρ, Vρ) | Representative irreducibles of H }
Ĝ = { (σ,Wσ) | Representative irreducibles of G }

We want to understand how the restriction and induction operations transform H-irreducibles to
G-irreducibles and vice versa. We can completely characterize how irreducibles change under the
restriction and induction procedures using branching rules and induction rules, respectively.

J.1 Restricted Representation and Branching Rules

Let (σ,W ) and (σ′,W ′) be G-representations. The restriction operation is linear and

ResGH [(σ,W )⊕ (σ′,W ′)] = ResGH [(σ,W )]⊕ ResGH [(σ′,W ′)]

We can study the restriction operation by looking at restrictions of the set of G-irreducibles Ĝ. The
restriction of an G-irreducible is not necessarily irreducible in H and will decompose as a direct sum
of H-irreducibles. Let (σ,Wσ) ∈ Ĝ. We can define a set of integers Bσ,ρ : Ĝ× Ĥ → Z≥0,

ResGH [(σ,Wσ)] =
⊕
ρ∈Ĥ

Bσ,ρ(ρ,Wρ)

so that Bσ,ρ counts the multiplicities of the H-irreducible (ρ,Wρ) in the restricted representation of
the G-irreducible (σ,Wσ). The Bσ,ρ are called branching rules and they have been well studied in
the context of particle physics [52]. Let (σ′,W ′) be any G-representation. (σ′,W ′) will decompose
into G-irreducibles as

(σ′,W ′) =
⊕
σ∈Ĝ

mσ(σ,Wσ)

where mσ counts the number of copies of the G-irreducible (σ,Wσ) in (σ′,W ′). Then, the restriced
representation of (σ′,W ′) decomposes into H-irreducibles as

ResGH [(σ′,W ′)] =
⊕
σ∈Ĝ

mσ Res
G
H [(σ,Wσ)] =

⊕
ρ∈Ĝ

∑
σ∈Ĝ

[mσBσ,ρ](ρ,Wρ)

So that the multiplicity of the (ρ,Wρ) irreducible in the restriction of (σ′,W ′) is
∑

σ∈Ĝ mσBσ,ρ.
Thus, the branching rules Bσ,ρ completely determine how an arbitrary G-representation restricts to
an H-representation.

J.2 Induced Representation and Induction Rules

The induction operation acts linearly on representations composed of direct sums of representations.
Specifically, if (ρ1, V1) and (ρ2, V2) are representations of H , then

IndGH [(ρ1, V1)⊕ (ρ2, V2)] = IndGH [(ρ1, V1)]⊕ IndGH [(ρ2, V2)]

The induction operation IndGH maps every irreducible representation (ρ, Vρ) ∈ Ĥ to a G-
representation. The induced representation of an irreducible representation of H is not necessarily
irreducible in G and will break into irreducibles in Ĝ as

IndGH [(ρ, Vρ)] =
⊕
σ∈Ĝ

Iρ,σ(σ,Wσ)

where the integers Iρ,σ : Ĥ × Ĝ →∈ Z≥0 denotes the number of copies of the irreducible (σ,Wσ) ∈
Ĝ in the induced representation IndGH(ρ, Vρ) of the irreducible (ρ, Vρ). The Iρ,σ are called Induction
Rules and completely determine the multiplicities of G-irreducibles in the induced representation of
any H-representation. Specifically, let (ρ′, V ′) be any representation of H . Then, (ρ′, V ′) breaks
into H-irreducibles as

(ρ′, V ′) =
⊕
ρ∈Ĥ

nρ(ρ, Vρ)
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The induced representation is linear and maps (ρ′, V ′) into a representation of G which will break
into G-irreducibles as

IndGH [(ρ′, V ′)] =
⊕
ρ∈Ĥ

nρ Ind
G
H(ρ, Vρ) =

⊕
σ∈Ĝ

(
∑
ρ∈Ĥ

nρIρ,σ)(σ,Wσ)

so that the multiplicity of (σ,Wσ) ∈ Ĝ in the induced representation of (ρ, Vρ) ∈ Ĥ is given
by

∑
ρ∈Ĥ mσIρ,σ. Thus, the induction rules Iρ,σ completely determine the multiplicities of G-

representations in the induced representation of any H-representation.

J.3 Irriducibility and Frobinous Reciprocity

The induction rules Iρσ : Ĥ × Ĝ → Z≥0 and the branching rules Bσρ : Ĝ× Ĥ → Z≥0 are related
by the Frobinous reciprocity theorem [37]. Let (ρ′, V ′) be any H-representation and let (σ′,W ′) be
any G-representation. Then,

HomH [(ρ′, V ′),ResGH [(σ′,W ′)]] ∼= HomG[Ind
G
H [(ρ′, V ′)], (σ′,W ′)]

Choosing (ρ′, V ′) = (ρ, Vρ) ∈ Ĥ and (σ′,W ′) = (σ,Wσ) ∈ Ĝ gives Iρ,σ = Bσ,ρ. So that
when viewed as matrices, B = IT . All information about how H-representations are induced to
G-representations and G-representations are restricted to H-representations is encoded in both Bσ,ρ

and Iρ,σ. It should be noted for many cases of interest, Bσ,ρ and Iρ,σ are sparse, and have non-zero
entries for only a small number of ρ and σ pairs. In the next section, we discuss how the structure of
Bσ,ρ and Iρ,σ constraint the design of equivariant neural architectures.

J.4 Induced and Restriction Representation Based Architectures

Heuristically, convolutional neural networks are compositions of linear functions, interleaved with
non-linearities. At each layer of the network, we have a set of functions from a homogeneous space
of a group into some vector space [6]. Let XH

i be a set of homogeneous spaces of the group H and
let XG

j be a set homogeneous spaces of the group G. Let V H
i and WG

j be a set of vector spaces
.Then, consider the function spaces

FH
i = { f | f : XH

i → V H
i }, FG

j = { f ′ | f ′ : XG
j → WG

j }

The group H acts on the homogeneous spaces XH
i and the group G acts on the homogeneous spaces

XG
j so that the function spaces FH

i and FG
j form representations of H and G, respectively

Suppose we wish to design a downstream G-equivariant neural network that accepts as signals
functions that live in the vector space FH

0 and transform in the ρ0 representation of H . Thus,
(ρ0,FH

0 ) is a H-representation, but not necessarily a G-representation. At some point, in the
architecture, a layer FH

i must be H equivariant on the left and both H and G-equivariant on the right.
Let us call the layer that is both H and G-equivariant FG

1 .

... (ρi,FH
i ) (σ1,FG

1 ) ...

... (ρi,FH
i ) (σ1,FG

1 ) ...

Φi−1

ρi(h)

Ψ

σ1(g)

Ψ1

Φi−1 Ψ Ψ1

∼=

... (ρi,FH
i ) IndGH [(ρi,FH

i )] (σ1,FG
1 ) ...

... (ρi,FH
i ) IndGH [(ρi,FH

i )] (σ1,FG
1 ) ...

Φi−1

ρi(h)

Φρi

IndGH [ρi]

Ψ↑

σ1(g)

Ψ1

Φi−1 Φρi Ψ↑ Ψ1

Figure 13: Factorization of Generic Architecture Using Universal Property of Induced Representation
5.1 Ψ = Ψ↑ ◦ Φσi

Suppose that Ψ is an intertwiner between (ρi,FH
i ) and (σ1,FG

1 ). Using 5.1, there is a canonical
basis of the space HomH [(ρi,FH

i ),ResGH [(σ1,FG
1 )]] ∼= HomG[Ind

G
H [(ρi,FH

i )], (σ1,FG
1 )] and we

may write Ψ uniquely as Ψ = Ψ↑ ◦Φρ where Φρ is an H-equivariant map and Ψ↑ is a G-equivariant
map.

(ρ0,FH
0 ) (ρ1,FH

1 ) ... (ρi,FH
i ) (σ1,FG

1 ) (σ2,FG
2 ) ... (σj ,FG

j )

(ρ0,FH
0 ) (ρ1,FH

1 ) ... (ρ0,FH
0 ) (σ1,FG

1 ) (σ2,FG
2 ) ... (σj ,FG

j )

ρ0(h)

Φ0

ρ1(h)

Φ1 Φi−1

ρi(h)

IndGH

σ1(g)

Ψ1 Ψ2

σ2(g)

Ψj−1

σj(g)

Φ0 Φ1 Φi−1 IndGH
Ψ1 Ψ2 Ψj−1
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Figure 14: Most general downstream G-equivariant architecture that accepts signals of capsule type
ρ0 that live in vector space FH

0 . Using the universal property of the induction layer, all downstream
G-equivariant architectures can be written in this form.

Using this decomposition, we may write any G-equivariant neural architecture that accepts sig-
nals in the function space FH

0 as J.4. Each layer FH
i transforms in the ρi representation

of the group H . Each layer FG
j transforms in the σj representation of the group G. Each

map Φi ∈ HomH [(ρi,FH
i ), (ρi+1,FH

i+1)] is an intertwiner of H representations. Each map
Ψi ∈ HomG[(σi,FG

i ), (σi+1,FG
i+1)] is an intertwiner of G representations. All layers preceding the

induced mapping are H-equivariant. All layers succeeding the induced mapping are G-equivariant.

Uniformly G-equivariant networks are the topic of a significant amount of research. End to end
G-equivariant networks can be essentially fully categorized [8]. Each layer is labeled by the number
of multiplicity of irreducibles that it falls into and the non-linear activation function. Thus, an
architectures of the form J.4 can be completely specified by decomposition of each layer into
irreducibles

(ρ0,FH
0 ) =

⊕
ρ∈Ĥ

m0ρ(ρ, Vρ)

(ρ1,FH
1 ) =

⊕
ρ∈Ĥ

m1ρ(ρ, Vρ), (ρ2,FH
2 ) =

⊕
ρ∈Ĥ

m2ρ(ρ, Vρ), ..., (ρi,FH
i ) =

⊕
ρ∈Ĥ

miρ(ρ, Vρ)

(σ1,FG
1 ) =

⊕
σ∈Ĝ

n1τ (σ,Wσ), (σ2,FG
2 ) =

⊕
σ∈Ĝ

n2σ(σ,Wσ), ..., (σj ,FG
j ) =

⊕
σ∈Ĝ

njσ(σ,Wσ)

where mi,ρ are the multiplicities of the H-irreducible (ρ, Vρ) in the i-th H-equivariant layer and nj,σ

are the multiplicities of the G-irreducible (σ,Wσ) in the j-th G-equivariant layer. [6] introduced the
concept of fragments, which label how a layer breaks into irreducibles. For networks that are initially
H-equivariant but downstream G-equivariant, we need to specify the group as well as the fragment
type.

A induced representation based network is characterized by the non-linearities and (i+1)H-fragments
and j G-fragments,

H-Equivariant Input Space: (m0,1,m0,2, ...m0,|Ĥ|)

H-Equivariant Layers: (m1,1,m1,2, ...m1,|Ĥ|) (m1,1,m1,2, ...m1,|Ĥ|) ... (mi,1,mi,2, ...mi,|Ĥ|)

G-Equivariant Layers: (n1,1, n1,2, ...n1,|Ĝ|), (n1,1, n1,2, ...n1,|Ĝ|) ... (ni,1, ni,2, ...ni,|Ĝ|)

where each of the i H-equivariant layers is specified by a fragment (mx,1,mx,2, ...mx,|Ĥ|) which
specifies the decomposition of the x-th layer into H-irreducibles. Similarly, each of the j G-
equivariant layers is specified by a fragment (ny,1, ny,2, ...ny,|Ĝ|) which specifies the decomposition
of the y-th layer into G-irreducibles. The fragments (mi,1,mi,2, ...mi,|Ĥ|) and (n1,1, n1,2, ...n1,|Ĝ|)

can not be arbitrarily chosen and are related by induced and restriction representations. Specifically,
the linear maps between boundary layers must satisfy,

Ψ ∈ HomH [(ρi,FH
i ),ResGH [(σ1,FG

1 )]] ∼= HomG[Ind
G
H [(ρi,FH

i )], (σ1,FG
1 )]

Specifically, if (ρi,FH
i ) and (σ1,FG

1 ) decompose into irreducibles as

(ρi,FH
i ) =

⊕
ρ∈Ĥ

miρ(ρ, Vρ), (σ1,FG
1 ) =

⊕
σ∈Ĝ

n1σ(σ,Wσ)

Then, we can write the induced and restricted representations in terms of the branching and induction
rules,

ResGH [(σ1,FG
1 )] =

⊕
ρ∈Ĥ

[(
∑
σ∈Ĝ

n1σBσ,ρ)(ρ, Vρ)] IndGH [(ρi,FH
i )] =

⊕
σ∈Ĝ

[(
∑
ρ∈Ĥ

mi,ρIρ,σ)(σ,Wσ)]

J.4.1 Generalization to Multiple Groups

We have chosen to consider the case where we induce directly from H ⊂ G to G. It should be
noted that this induction procedure can also be performed incrementally for any sequence of nested
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ascending subgroups H = G1 ⊂ G2... ⊂ GN−1 ⊂ G = GN . A network architecture is then
completely specified by a set of layers that decompose into Gi-irreducibles,

(ρG1
0 ,FG1

0 ) =
⊕
σ∈Ĝ1

nG1
0σ (σ, Vσ), (ρG1

1 ,FG1
1 ) =

⊕
σ∈Ĝ1

nG1
1σ (σ, Vσ), ... (ρG1

i1
,FG1

i1
) =

⊕
σ∈Ĝ1

nG1
i1σ

(σ, Vσ)

(ρG2
1 ,FG2

1 ) =
⊕
σ∈Ĝ2

nG2
1σ (σ, Vσ), (ρG2

2 ,FG2
2 ) =

⊕
σ∈Ĝ2

nG2
2σ (σ, Vσ), ... (ρG2

i2
,FG2

i2
) =

⊕
σ∈Ĝ2

nG2
i2σ

(σ, Vσ),

...

(ρGN
1 ,FGN

1 ) =
⊕

σ∈ĜN

nGN
1σ (σ, Vσ), (ρGN

2 ,FGN
2 ) =

⊕
σ∈ĜN

nGN
2σ (σ, Vσ), ... (ρGN

iN
,FGN

iN
) =

⊕
σ∈ĜN

nGN
iNσ(σ, Vσ)

Let ΨB
i be the intertwiner at the i-th boundary layer. The equivarience conditions require that

ΨB
1 ∈ HomG1 [(ρ

G1
i1

,FG1
i1

),ResG2

G1
[(ρG2

i2
,FG2

i2
)]] ∼= HomG2 [Ind

G2

G1
[(ρG1

i1
,FG1

i1
)], (ρG2

i2
,FG2

i2
)]

ΨB
2 ∈ HomG2

[(ρG2
i2

,FG2
i2

),ResG3

G2
[(ρG3

i3
,FG3

i3
)]] ∼= HomG3

[IndG3

G2
[(ρG2

i2
,FG2

i2
)], (ρG3

i3
,FG3

i3
)]

...

ΨB
N−1 ∈ HomGN−1

[(ρ
GN−1

iN−1
,FGN−1

iN−1
),ResGN

GN−1
[(ρGN

iN
,FGN

iN
)]] ∼= HomGN

[IndGN

GN−1
[(ρ

GN−1

iN−1
,FGN−1

iN−1
)], (ρGN

iN
,FGN

iN
)]

Let IGiGi+1 : Ĝi × Ĝi+1 → Z≥0 and BGiGi+1 : Ĝi+1 × Ĝi → Z≥0 be the induction rules and
the branching rules for the groups Gi ⊂ Gi+1, respectively. Then, we can write the induced and
restricted representations at each layer in terms of the branching and induction rules,

ResG2
G1

[(ρG2
i2

,FG2
i2

)] =
⊕
ρ∈Ĝ1

[(
∑
σ∈Ĝ2

nG2
1σ BG1G2

σ,ρ )(ρ, Vρ)], IndG2
G1

[(ρG1
i1

,FG1
i1

)] =
⊕
ρ∈Ĝ2

[(
∑
σ∈Ĝ1

nG1
i1,σ

IG1G2
σ,ρ )(ρ, Vρ)]

ResG3
G2

[(ρG3
i3

,FG3
i3

)] =
⊕
ρ∈Ĝ2

[(
∑
σ∈Ĝ3

nG3
1σ BG2G3

σ,ρ )(ρ, Vρ)], IndG3
G2

[(ρG2
i2

,FG2
i2

)] =
⊕
ρ∈Ĝ3

[(
∑
σ∈Ĝ2

nG2
i2,σ

IG2G3
σ,ρ )(ρ, Vρ)]

...

ResGN
GN−1

[(ρGN
iN

,FGN
iN

)] =
⊕

ρ∈ĜN−1

[(
∑

σ∈ĜN

nGN
1σ B

GN−1GN
σ,ρ )(ρ, Vρ)], IndGN

GN−1
[(ρ

GN−1

iN−1
,FGN−1

iN−1
)] =

⊕
ρ∈ĜN

[(
∑

σ∈ĜN−1

n
GN−1

iN−1,σ
I
GN−1GN
σ,ρ )(ρ, Vρ)]

Thus, the induced representation allows for the design of networks that are equivariant with respect a
sequence of ascending nested larger groups. It should be noted that it is also possible to move in the
‘other direction’. The restriction representation can be used for coset pooling [20] to design networks
that are equivariant with respect to a descending sequence of nested subgroups G′

1 ⊃ G′
2 ⊃ ... ⊃ G′

N .
Thus, the induced representation, combined with coset pooling allow for the design of neural networks
that are at different stages equivariant with respect to an arbitrary sequence of groups G1, G2, ..., GN ,
so long as each group in the sequence either contains or is contained by the previous group.

K Toy Example: Tetrahedral Signals

Figure 15: Left: Three dimensional tetra-
hedron T̄ with symmetry group A4. The
projection of T̄ into a plane is an equilateral
triangle T . The symmetry group of T is Z3.
Right: Three dimensional dodecehedron D̄
with symmetry group A5. The projection of
D̄ into a plane is an pentagon D. The sym-
metry group of T is Z5.

We work out one toy example to help build intuition for
induced representations.

Let T̄ denote a tetrahedron in three dimensional space. T̄
is composed of four vertices and four equilateral triangular
faces. Let T be the projection of T̄ in a direction normal
to a face of T̄ . As show in 15, the image of a projection
in a direction normal to a face is a equilateral triangle
which we will call T . The induced representation has a
natural geometric interpretation that relates the symmetry
subgroup of the projected platonic solid T to the full Pla-
tonic solid T̄ . The same argument presented here for the
dodecehedron D̄ recovers the results of [11].

The group of orientation preserving symmetries of the
equilateral triangle T is Z3 which corresponds to rotations
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through the origin an angle of 0, 2π
3 or 4π

3 . The group of orientation preserving symmetries of T̄ is
A4.

Let f : T → Rc be a signal defined on T . Take {Φk}4k=1 to be four independent filters with
Φk : T → RK×c each transforming in the same representation of Z3. We can then convolve each Φk

with f ,

∀g ∈ Z3, Ψk(g) = (Φk ⋆ f)(g) =

∫
x∈T

Φk(x)f(g
−1x)

so that each Ψk : Z3 → RK ∈ (RK)Z3 . The group Z3 has action on each Ψk. Now, let us vectorize
the Ψk group valued functions into one variable Ψ with Ψ : Z3 → R4K ,

g ∈ Z3, Ψ(g) =

Ψ1(g)
Ψ2(g)
Ψ3(g)
Ψ4(g)


We can now compute the induced action. The computations involved with this map are straightforward
but somewhat tedious and are described in L. We just state the results in this section. Let Ψ↑ be
the function defined on A4, which has A4 induced action. First, consider Ψ↑ on elements of
Z3 = {e, (1, 2, 3), (1, 3, 2)},

Ψ↑[e] =

Ψ1[e]
Ψ2[e]
Ψ3[e]
Ψ4[e]

 , Ψ↑[(1, 2, 3)] =

Ψ1[(1, 2, 3)]
Ψ4[(1, 2, 3)]
Ψ2[(1, 2, 3)]
Ψ3[(1, 2, 3)]

 Ψ↑[(1, 3, 2)] =

Ψ1[(1, 3, 2)]
Ψ3[(1, 3, 2)]
Ψ4[(1, 3, 2)]
Ψ2[(1, 3, 2)]


Note that on Z3 coset Ψ↑ acts only via permutations.

Now, consider the (1, 2, 4)H coset, we have that

Ψ↑[(1, 2, 4)] =

 Ψ2[e]
Ψ4[(1, 3, 2)]
Ψ3[(1, 3, 2)]
Ψ1[(1, 2, 4)]

 , Ψ↑[(1, 3)(2, 4)] =

Ψ2[(1, 2, 3)]
Ψ1[(1, 3, 2)]

Ψ4[e]
Ψ3[e]

 Ψ↑[(2, 4, 3)] =

Ψ2[(1, 3, 2)]
Ψ3[(1, 2, 3)]

Ψ1[e]
Ψ4[(1, 2, 3)]


Similarly, for the (2, 3, 4)H coset, we have that,

Ψ↑[(2, 3, 4)] =

 Ψ3[e]
Ψ1[(1, 2, 3)]
Ψ2[(1, 3, 2)]
Ψ4[(1, 3, 2)]

 , Ψ↑[(1, 2)(3, 4)] =

Ψ3[(1, 2, 3)]
Ψ4[e]

Ψ1[(1, 3, 2)]
Ψ2[e]

 Ψ↑[(3, 4, 1)] =

Ψ3[(1, 3, 2)]
Ψ2[(1, 2, 3)]
Ψ4[(1, 2, 3)]

Ψ1[e]


Lastly for the (3, 1, 4)H coset, we have that

Ψ↑[(3, 1, 4)] =

 Ψ4[e]
Ψ2[(1, 3, 2)]
Ψ1[(1, 2, 3)]
Ψ3[(1, 3, 2)]

 , Ψ↑[(2, 3)(1, 4)] =

Ψ4[(1, 2, 3)]
Ψ3[e]
Ψ2[e]

Ψ1[(1, 3, 2)]

 Ψ↑[(1, 4, 2)] =

Ψ4[(1, 3, 2)]
Ψ1[e]

Ψ3[(1, 2, 3)]
Ψ2[(1, 2, 3)]


Thus, we have constructed a function Ψ↑ : A4 → R4K from a set of four filters Φk : T → RK×c

defined on the triangle T . The important observation is that the group A4 acts on Ψ↑ via permutation
and action by an element Z3 ⊂ A4. This is the same as the induced representation which has G-action
that is a mix of permutation and H-action A.0.2. It should be noted that unlike the projection trick
used in [10], this construction requires no padding or projections. Furthermore, it is not even required
that the signal f be lifted from T into T̄ .

K.0.1 Comparison With Orthographic Projection

In analogy with [12, 10, 11], another way to create a signal on T̄ would be to first lift the signal from
T to T̄ via orthographic projection and then use an A4-equivariant neural network to extract features.
Note that this approach is a specific instance of our construction in K and corresponds to setting

Φ1 = Φ(x) Φ2 = Φ3 = Φ4 = 0

where Φ(x) : T → T is a feature map defined on the equilateral triangle. With this choice of Φk,
occluded faces of the tetrahedron have no signal defined on them.
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L Group Calculations for Induced Representation of Z3 to A4

This section details the calculations in computing induced representations of Z3 on A4. Computations
were done with symbolic computer program, which is available upon request. Let us take Z3 ⊂ A4

to be the group
Z3 = ⟨(1, 2, 3)⟩ = {e, (1, 2, 3), (1, 3, 2)}

Let us calculate the representatives of the four left cosets of A4/Z3. We have that
e · Z3 = {e, (1, 2, 3), (1, 3, 2)}
(1, 2, 4) · Z3 = {(1, 2, 4), (1, 3)(2, 4), (2, 4, 3)}
(2, 3, 4) · Z3 = {(2, 3, 4), (1, 2)(3, 4), (3, 4, 1)}
(3, 1, 4) · Z3 = {(1, 4, 3), (2, 3)(1, 4), (1, 4, 2)}

Thus, the elements g1 = e, g2 = (1, 2, 4), g3 = (2, 3, 4), g4 = (3, 1, 4) are representatives of A4/Z3.
Now, we know that,

∀g ∈ A4, ∀gi ∈ {g1, g2, g3, g4}, ∃hi(g) ∈ Z3 s.t. g · gi = gjg(i)hi(g)

where jg is a permutation and hi(g) ∈ H . We thus need to compute the permutations jg ∈ S4 :
{1, 2, 3, 4} → {1, 2, 3, 4} and hi(g) ∈ H . The identity element coset has

je =

[
1 2 3 4
1 2 3 4

]
, j(1,2,3) =

[
1 2 3 4
1 4 2 3

]
, j(1,3,2) =

[
1 2 3 4
1 3 4 2

]
,

h(e) =

[
1 2 3 4
e e e e

]
,

h(1, 2, 3) =

[
1 2 3 4

(1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3)

]
,

h(1, 3, 2) =

[
1 2 3 4

(1, 3, 2) (1, 3, 2) (1, 3, 2) (1, 3, 2)

]
Now, for the g2 = (1, 2, 4) coset,

j(1,2,4) =

[
1 2 3 4
2 4 3 1

]
, j(1,3)(2,4) =

[
1 2 3 4
2 1 4 3

]
, j(2,4,3) =

[
1 2 3 4
2 3 1 4

]
,

h(1, 2, 4) =

[
1 2 3 4
e (1, 3, 2) (1, 3, 2) (1, 2, 3)

]
,

h((1, 3)(2, 4)) =

[
1 2 3 4

(1, 2, 3) (1, 3, 2) e e

]
,

h(2, 4, 3) =

[
1 2 3 4

(1, 3, 2) (1, 2, 3) e (1, 2, 3)

]
Similarly, for the (2, 3, 4) coset,

j(2,3,4) =

[
1 2 3 4
3 1 2 4

]
, j(1,2)(3,4) =

[
1 2 3 4
3 4 1 2

]
, j(3,4,1) =

[
1 2 3 4
3 2 4 1

]
,

h(2, 3, 4) =

[
1 2 3 4
e (1, 2, 3) (1, 3, 2) (1, 3, 2)

]
,

h((1, 2)(3, 4)) =

[
1 2 3 4

(1, 2, 3) e (1, 3, 2) e

]
,

h(3, 4, 1) =

[
1 2 3 4

(1, 3, 2) (1, 2, 3) (1, 2, 3) e

]
And lastly for the (1, 4, 3) coset,

j(1,4,3) =

[
1 2 3 4
4 2 1 3

]
, j(2,3)(1,4) =

[
1 2 3 4
4 3 2 1

]
, j(1,4,2) =

[
1 2 3 4
4 1 3 2

]
,

h(1, 4, 3) =

[
1 2 3 4
e (1, 3, 2) (1, 2, 3) (1, 3, 2)

]
,

h((2, 3)(1, 4)) =

[
1 2 3 4

(1, 2, 3) e e (1, 3, 2)

]
,

h(1, 4, 2) =

[
1 2 3 4

(1, 3, 2) e (1, 2, 3) (1, 2, 3)

]
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Now that we have explicit formulae for jg and h(g) we can construct the induction of a function from
domain Z3 to A4.

L.1 Counting Degrees of Freedom

Z3 has three one dimensional irreducible representations (ρ1, V1), (ρ+, V+) and (ρ−, V−). The
actions are given by

v ∈ V1, ρ1(g)v = v

v ∈ V±, ρ±(g)v = exp(±2πi

3
)v

where (ρ1, V1) is the trivial representation and (ρ+, V+) and (ρ−, V−) are conjugate representations.

We can now find the induced representation of (ρk, Vk) on A4. The index is given by |A4 : Z3| = 4.
Let g1, g2, g3, g4 be representatives of the four left cosets in A4/Z3. So that

A4/Z3 = {g1Z3, g2Z3, g3Z3, g4Z3} (9)

Note that Z3 is not normal in A4 so A4/Z3 is not a group. Despite this, the decomposition in (9)
holds, via the fact that the set of representatives of cosets partitions G. The induced representation of
the irreducible (ρk, Vk) representation of Z3 on A4 acts on the vector space

k ∈ {1,+,−}, Wk = IndA4

Z3
(Vk) =

4⊕
i=1

giV
(i)
k

were the notation giV
(i)
k is a label denoting the i-th independent copy of the vector space Vk. Let

Rk = IndA4

Z3
(ρk) denote the action of A4 on Wk. We have that,

∀g ∈ A4, Rk(g) ·
4∑

i=1

givi =

4∑
i=1

gjg(i)ρk(hi(g))vi ∈ Wk

where ∀g ∈ A4, jg(i) ∈ S4 : {1, 2, 3, 4} → {1, 2, 3, 4} is a permutation of the coset representatives
and hi(g) ∈ Z3. To summarize, irreducible representations of Z3 = ⟨g⟩ are given by (ρk, Vk) with

v ∈ V1, ρ1(g)v = v

v ∈ V±, ρ±(g)v = exp(
±2πi

3
)v

The induced representations of Z3 on A4 are given by (Rk,Wk) with

k ∈ {1,+,−}, Wk =

4⊕
i=1

giV
(i)
k

Rk(g) ·
4∑

i=1

givi =

4∑
i=1

gjg(i)ρk(hi(g))vi

with g · gi = gjg(i) · hi(g)

Let us explicitly construct the induced representation of each irreducible of Z3 explicitly.
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L.1.1 Trivial Representation (ρ1, V1)

Consider first the trivial representation (ρ1, V1) of Z3. The induced action R1 = IndA4

Z3
(ρ1) is then

given by

R1[e] ·

v1v2v3
v4

 =

v1v2v3
v4

 R1[(1, 2, 3)] ·

v1v2v3
v4

 =

v1v4v2
v3

 R1[(1, 3, 2)] ·

v1v2v3
v4

 =

v1v3v4
v2



R1[(1, 2, 4)] ·

v1v2v3
v4

 =

v2v4v3
v1

 R1[(1, 3)(2, 4)] ·

v2v1v4
v3

 =

v1v2v3
v4

 R1[(2, 4, 3)] ·

v1v2v3
v4

 =

v2v3v1
v4



R1[(2, 3, 4)] ·

v1v2v3
v4

 =

v3v1v2
v4

 R1[(1, 2)(3, 4)] ·

v1v2v3
v4

 =

v3v4v1
v2

 R1[(3, 4, 1)] ·

v1v2v3
v4

 =

v3v2v4
v1



R1[(1, 4, 3)] ·

v1v2v3
v4

 =

v4v2v1
v3

 R1[(2, 3)(1, 4)] ·

v1v2v3
v4

 =

v4v3v2
v1

 R1[(2, 4, 3)] ·

v1v2v3
v4

 =

v4v1v3
v2


Working in the standard Euclidean basis, we may write this as

R1[e] =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R1[(1, 2, 3)] =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 R1[(1, 3, 2)] =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



R1[(1, 2, 4)] =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 R1[(1, 3)(2, 4)] =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 R1[(2, 4, 3)] =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1



R1[(2, 3, 4)] =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 R1[(1, 2)(3, 4)] =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 R1[(3, 4, 1)]

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0



R1[(1, 4, 3)] =

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 R1[(2, 3)(1, 4)] =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 R1[(2, 4, 3)] =

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


Note that the induced action of a trivial representation acts only via permutation for all groups.

L.1.2 (ρ+, V+) and (ρ−, V−) Representations

Now, consider the two complex representations (ρ+, V+) and (ρ−, V−). These representations are
conjugate representations,

(ρ+, V+) = (ρ−, V−) (ρ−, V−) = (ρ+, V+)

The induced representation of the conjugate is the conjugate of the induced representation,

IndGH [(ρ, V )] = IndGH [(ρ, V )]
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Thus, we have that

R±[e] ·

v1v2v3
v4

 =

v1v2v3
v4

 R±[(1, 2, 3)] ·

v1v2v3
v4

 = ω±

v1v4v2
v3

 R±[(1, 3, 2)] ·

v1v2v3
v4

 = ω∓

v1v3v4
v2



R±[(1, 2, 4)] ·

v1v2v3
v4

 =

 v2
ω±v4
ω∓v3
ω∓v1

 R±[(1, 3)(2, 4)] ·

v2v1v4
v3

 =

ω±v1
ω∓v2
v3
v4

 R±[(2, 4, 3)] ·

v1v2v3
v4

 =

ω∓v2
ω±v3
v1

ω±v4



R1[(2, 3, 4)] ·

v1v2v3
v4

 =

 v3
ω±v1
ω∓v2
ω∓v4

 R±[(1, 2)(3, 4)] ·

v1v2v3
v4

 =

ω±v3
v4

ω∓v1
v2

 R±[(3, 4, 1)] ·

v1v2v3
v4

 =

ω∓v3
ω±v2
ω±v4
v1



R±[(1, 4, 3)] ·

v1v2v3
v4

 =

 v4
ω∓v2
ω±v1
ω∓v3

 R±[(2, 3)(1, 4)] ·

v1v2v3
v4

 =

ω±v4
v3
v2

ω∓v1

 R±[(2, 4, 3)] ·

v1v2v3
v4

 =

ω∓v4
v1

ω±v3
ω±v2


Working in the standard Euclidean basis, we may write this as

R±[e] =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 R±[(1, 2, 3)] = ω±

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 R±[(1, 3, 2)] = ω∓

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0



R±[(1, 2, 4)] =

 0 1 0 0
0 0 0 ω±
0 0 ω∓ 0
ω∓ 0 0 0

 R±[(1, 3)(2, 4)] =

 0 ω± 0 0
ω∓ 0 0 0
0 0 0 1
0 0 1 0

 R±[(2, 4, 3)] =

0 ω∓ 0 0
0 0 ω± 0
1 0 0 0
0 0 0 ω±



R±[(2, 3, 4)] =

 0 0 1 0
ω± 0 0 0
0 ω∓ 0 0
0 0 0 ω∓

 R±[(1, 2)(3, 4)] =

 0 0 ω± 0
0 0 0 1
ω∓ 0 0 0
0 1 0 0

 R±[(3, 4, 1)] =

0 0 ω∓ 0
0 ω± 0 0
0 0 0 ω±
1 0 0 0



R±[(1, 4, 3)] =

 0 0 0 1
0 ω∓ 0 0
ω± 0 0 0
0 0 ω∓ 0

 R±[(2, 3)(1, 4)] =

 0 0 0 ω±
0 0 1 0
0 1 0 0
ω∓ 0 0 0

 R±[(2, 4, 3)] =

0 0 0 ω∓
1 0 0 0
0 0 ω± 0
0 ω± 0 0



The group A4 has four conjugacy classes: e, (1, 2, 3), (1, 2)(3, 4) and (1, 3, 2). The four irreducible

e (1, 2, 3) (1, 3, 2) (12)(34)
χR1 4 1 1 0
χR+

4 ω+ ω− 0
χR− 4 ω− ω+ 0

Table 8: Character Table for induced representations of the irreducibles (ρ1, V1), (ρ+, V+) and
(ρ−, V−) of Z3 on A4, R+ = IndA4

Z3
(ρ+) and R− = IndA4

Z3
(ρ−). ω+ = exp( 2πi3 ) = ω̄−.

representations of A4 are: The trivial (σ1,W1) representation, two conjugate one-dimensional
representations (σ1,+,W1,+), (σ1,−,W1,−) and one three dimensional representation (σ3,W3). We
can thus compute the induction coefficients of the induced representation of Z3 on A4. We have that

IndA4

Z3
[(ρ1, V1)] = (σ3,W3)⊕ (σ1,W1)

IndA4

Z3
[(ρ+, V+)] = (σ3,W3)⊕ (σ1,+,W1,+)

IndA4

Z3
[(ρ−, V−)] = (σ3,W3)⊕ (σ1,−,W1,−)
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e (1, 2, 3) (1, 3, 2) (12)(34)
χ1 1 1 1 1
χ1,− 1 ω+ ω− 1
χ1,+ 1 ω− ω+ 1
χ3 3 0 0 -1

Table 9: Character Table for A4. ω+ = exp( 2πi3 ) = ω̄−. (σ1,+,W1,+) and (σ2,−,W2,−) are
conjugate representations.

Using Frobinous Reciprocity, we can derive the restrictions of A4 irreducibles. We have that

ResA4

Z3
[(σ3,W3)] = (ρ1, V1)⊕ (ρ+, V+)⊕ (ρ−, V−)

ResA4

Z3
[(σ1+,W1+)] = (ρ+, V+)

ResA4

Z3
[(σ1−,W1−)] = (ρ−, V−)

ResA4

Z3
[(σ1,W1)] = (ρ1, V1)

Figure 16: Left: Decomposition of the restricted representation ResA4

Z3
of A4-irreducibles (σ,Wσ) ∈

Â4 into Z3-irreducibles (ρ, Vρ) ∈ Ẑ3. Not every Z3-representation can be realized as the restriction of
a A4-representation. Right: Decomposition of the induced representation IndA4

Z3
for Z3-irreducibles

(ρ, Vρ) ∈ Ẑ3 into A4-irreducibles (σ,Wσ) ∈ Â4. Not every A4-representation can be realized as the
induction of a Z3-representation.

We are only interested in real representations. The most general real representation of Z3 is given by

(ρ, V ) = m1(ρ1, V1)⊕mc[(ρ+, V+)⊕ (ρ−, V−)]

where m1 and mc are integers. The dimension of the vector space V is dimV = m1 +mc. The
induced representation of (ρ, V ) is

(R,W ) = IndA4

Z3
[(ρ, V )] = [m1 + 2mc](σ3,W3)⊕mc[(σ1,+,W1,+)⊕ (σ1,−,W1,−)]⊕m1(σ1,W1)

where the vector space W of the induced representation has dimension dimW = 3(m1 + 2mc) +
2mc +m1 = 4m1 + 8mc = 4(m1 + 2mc) = 4 dimV as expected. This result, although simple
is extremely satisfying as it shows that any function on A4 can be lifted from a function on Z3. To
see this, note the following: By the Peter-Weyl theorem, the left regular representation (L,RZ3)
decomposes as

(L,RZ3) = (ρ1, V1)⊕ [(ρ+, V+)⊕ (ρ−, V−)]

Thus, the induced representation of (L,RZ3) is from Z3 to A4 is thus

(R,W ) = IndA4

Z3
[RZ3 ] = 3(σ3,W3)⊕ [(σ1,+,W1,+)⊕ (σ1,−,W1,−)]⊕ (σ1,W1)

Now, again by the Peter-Weyl theorem, the left regular representation (L,RA4) of A4 decomposes as

(L,RA4) = 3(σ3,W3)⊕ [(σ1,+,W1,+)⊕ (σ1,−,W1,−)]⊕ (σ1,W1)
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So the induced representation of the left regular representation of Z3 has the same decomposition
into irreducibles as the left regular representation of A4. Representations are completely determined
by their decomposition into irreducibles and

(L,RA4) = IndA4

Z3
[(L,RZ3)] (10)

Ergo, the space of functions from A4 into R is identical to the induced representation from Z3 to A4

of the space of functions of Z3 into R. Using the linearity of the induced representation and taking
the c-fold direct sum of both sides of (10), we have that

(L, (Rc)A4) = IndA4

Z3
[(L, (Rc)Z3)]

Thus, as expected, the induced representation bijectively maps group valued functions from Z3 → Rc

into group valued functions from A4 → R4c.
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