

Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural Networks

Woojin Cho, Kookjin Lee, Donsub Rim, Noseong Park

Preliminaries: Physics-informed Neural Networks

Solving PDE with coordinate-based MLP (PINN)

$$(\mathbf{x}, t) \longrightarrow |$$
 Neural Network: $\theta | \longrightarrow \tilde{u}$

How to train?

•
$$L \stackrel{\text{def}}{=} \alpha L_u + \beta L_f$$
 (Total loss)
• $L_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |F(x_f^i, t_f^i, \tilde{u}; \theta)|^2$ (PDE residual loss)
• $L_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(x_u^i, t_u^i) - \tilde{u}(x_u^i, t_u^i; \theta)|^2$ (Boundary loss)

F: PDE operator (x_f, t_f) : collocation points (x_u, t_u) : initial & boundary points N_f : # collocation points N_u : # initial & boundary points

Motivation

Limitation of PINNs

- For a new data instance, training a new neural network is required.
 - → Not suitable for **many-query** scenarios (especially, parameterized PDEs)
- "Failure mode" of PINNs

Our proposed method includes:

i) a low-rank structured neural network architecture for PINNs, i.e., LR-PINNs

ii) an efficient rank-revealing training algorithm, which adaptively adjust ranks of LR-PINNs for varying PDE inputs

iii) a two-phase procedure (offline training / online testing) for handling many-query scenarios

Proposed Method

Model architecture

Experiments

Model		Naïv	e-LR-l	Ours	PINN		
Rank	10	20	30	40	50	Adaptive	-
# Parameters	381	411	441	471	501	~351	10,401

Table 3: Comparisons of model size

Adaptive rank on convection equation (the left and the middle panels). The magnitude of the learned diagonal elements of the second hidden layer (the right panel).

Experiments

	Rank	[w/o] Pre-training Naïve-LR-PINN						[w] Pre-	training				
β				Curriculum learning		MAML		Reptile		Hyper-LR-PINN (Full rank)		Hyper-LR-PINN (Adaptive rank)	
		Abs. err.	Rel. err.	Abs. err.	Rel. err.	Abs. err.	Rel. err.	Abs. err.	Rel. err.	Abs. err.	Rel. err.	Abs. err.	Rel. err.
30	10	0.5617	0.5344	0.4117	0.4098	0.6757	0.6294	0.5893	0.5551	0.0360	0.0379	0.0375	0.0389
	20	0.5501	0.5253	0.4023	0.4005	0.6836	0.6452	0.6144	0.5779				
	30	0.5327	0.5126	0.4233	0.4204	0.5781	0.5451	0.6048	0.5704				
	40	0.5257	0.5076	0.3746	0.3744	0.5848	0.5515	0.5757	0.5442				
	50	0.5327	0.5126	0.4152	0.4127	0.5898	0.5562	0.5817	0.5496				
35	10	0.5663	0.5357	0.5825	0.5465	0.6663	0.6213	0.5786	0.5446				
	20	0.5675	0.5369	0.6120	0.5673	0.6814	0.6433	0.5971	0.5606				
	30	0.6081	0.5670	0.5864	0.5503	0.5819	0.5466	0.5866	0.5506	0.0428	0.0443	0.0448	0.0461
	40	0.5477	0.5227	0.5954	0.5548	0.5809	0.5462	0.5773	0.5435				
	50	0.5449	0.5208	0.6010	0.5619	0.5870	0.5514	0.5731	0.5404				
40	10	0.5974	0.5632	0.5978	0.5611	0.6789	0.6446	0.5992	0.5632				
	20	0.5890	0.5563	0.6274	0.5820	0.7008	0.6801	0.6189	0.5853	0.0603	0.0655	0.0656	0.0722
	30	0.6142	0.5724	0.6011	0.5652	0.6072	0.5700	0.6126	0.5810				
	40	0.5560	0.5293	0.6126	0.5715	0.6149	0.5832	0.6004	0.5638				
	50	0.6161	0.5855	0.6130	0.5757	0.6146	0.5799	0.6007	0.5645				

Conclusion

Lower computational cost in many-query scenario

Resolving failure modes of PINNs

[Convection equation] Solution snapshots for $\beta = 40$

[Helmholtz equation] Solution snapshots for a = 2.5

0 5

> 0.0

-0.

 $-1.0_{1.0}$

-0.5

0.0

(b) Ours (Abs.err.=0.0285)

0.5

10

