
Large Language Models of Code Fail at
Completing Code with Potential Bugs

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho,
Leonard Lausen, Sheng Zha, and George Karypis

University of Wisconsin-Madison AWS AI Research and Education

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Existing completion models assume error-free inputs …

Code Completion with Code Language Models

Code-LLMs achieve > 50% pass rate on various benchmarks

2

Existing completion models assume error-free inputs …

Bugs in code are inevitable!

(esp for the in-progress partial code)

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

A change from += → -= results in a potential bug
→ partial code + original completion fails test: below_zero(1, 2) ==

False
→ the code completion should change

Buggy-Code Completion

Motivated scenarios: typos or logical mistakes during coding process

3

A change from += → -= results in a potential bug
→ partial code + original completion fails test: below_zero(1, 2) ==

False
→ the code completion should change

New Benchmarks for Buggy Code Completion

Buggy-HumanEval
● Artificial potential bugs
● Constructed from HumanEval

4

Buggy-FixEval
● Potential bugs procured from

user submissions to coding
problems

● Constructed from FixEval and
CodeNet

Analysis 1: Failures on Buggy-Code Completion

5

*Pass@1 (↑): percentage of passing all test cases, averaged over all problems
*CodeLMs: CG -- CodeGen [Nijkamp et al., 2022]; Incoder [Fried et al., 2022],

[CTJ+’21] Chen et al., 2021. Evaluating large language models trained on code.
[HALB’22] Haque et al., 2022. Fixeval: Execution-based evaluation of program fixes for competitive programming problems.

synthetic bugs [CTJ+’21] real bugs [HALB’22]

Performance drops hugely when potential bugs are present!

Mitigation Methods for Completion

6[FAL+’22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.

Strategy 3: Rewriting → Completion
Idea: locate and rewrite potential bugs before being completed

Strategy 1: Removal → Completion
Idea: remove the partial code to guarantee no potential bug

exists!
Strategy 2: Completion → Rewriting

Idea: treat the completion as buggy and attempt to fix.

Mitigation Methods for Completion

6[FAL+’22] Fried et al., 2022. Incoder: A generative model for code infilling and synthesis.

Strategy 3: Rewriting → Completion
Idea: locate and rewrite potential bugs before being completed

Consider potential bug as distributional outliers
using an infilling model [FAL+’22]

Strategy 1: Removal → Completion
Idea: remove the partial code to guarantee no potential bug

exists!
Strategy 2: Completion → Rewriting

Idea: treat the completion as buggy and attempt to fix.

Analysis 2: Mitigation Methods for Completion

7

Methods improve the completion, but remain huge gap to the inference

Ablation and Case Studies

When do Code-LLMs surpass?

8

Bug and split location can affect the performance

60%: fails to react

Thank you!
Contact information:
Tuan Dinh: tuan.dinh@ucsf.edu
Jinman Zhao: jinmaz@amazon.com

Poster: #539 (Wed 13 Dec 5 -- 7 p.m. CST)
Paper: https://neurips.cc/virtual/2023/poster/70988
Github: https://github.com/amazon-science/buggy-code-completion

mailto:tuan.dinh@ucsf.edu
mailto:yzeng58@wisc.edu
https://neurips.cc/virtual/2023/poster/70988

