

AD-PT: Autonomous Driving Pre-Training with Large-scale Point Cloud Dataset

Jiakang Yuan¹, Bo Zhang², Xiangchao Yan², Tao Chen¹, Botian Shi², Yikang Li², Yu Qiao²

¹ School of Information Science and Technology, Fudan University ² Shanghai Artificial Intelligence Laboratory

- Review of Autonomous Driving-related Pre-training
- > Method: AD-PT
 - Large-scale Point Cloud Dataset Preparation
 - Learning Unified Representations
- > Experimental Results

Review of Autonomous Driving-related Pre-training

Method: AD-PT

- Large-scale Point Cloud Dataset Preparation
- Learning Unified Representations

- The success of LiDAR-based 3D detectors depends on a large amount of point cloud data with accurate annotation
- Point cloud annotation is very difficult due to problems such as point cloud sparsity and occlusion.
- ≻ Unlabeled data is easy to obtain.
- > Pre-training: make full use of the information in unlabeled data

Contrastive-learning-based methods

• Using corresponding points of different views as positive pairs

- Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. In: ECCV (2020)
- Exploring geometry-aware contrast and clustering harmonization for selfsupervised 3d object detection. In: ICCV (2021)
- Proposalcontrast: Unsupervised pre-training for lidar-based 3d object detection. In: ECCV (2022)

Contrastive-learning-based methods

• Using corresponding points of different frames as positive

• Spatio-temporal self-supervised representation learning for 3d point clouds. In ICCV (2021)

• Using LiDAR point clouds from the vehicle- and infrastructure-side as positive pairs

CO3: Cooperative unsupervised 3d representation learning for autonomous driving. In ICLR (2023)

≻ MAE-based methods

- Voxel space
- Voxel-mae: Masked autoencoders for pre-training large-scale point clouds.

- BEV space
 - BEV-MAE: Bird's Eye View Masked Autoencoders for Outdoor Point Cloud Pre-training.

- Hierarchical space
- *GD-MAE: generative decoder for MAE pretraining on lidar point clouds. In CVPR (2023).*

> Previous methods

> AD-PT

- Pre-training and fine-tuning data are sampled from the same single dataset
- Better generalized performance on different datasets

Review of Autonomous Driving-related Pre-training

> Method: AD-PT

- Large-scale Point Cloud Dataset Preparation
- Learning Unified Representations

Overall Framework

- Large-scale Point Cloud Dataset Preparation
 - Performs large-scale point cloud pre-training in a semi-supervised manner
 - ONCE Dataset: $\sim 5k vs. \sim 1M$ (labeled data vs. unlabeled data)
 - Pseudo-labels with high accuracy on the pre-training dataset are beneficial to enhance the detection accuracy on downstream datasets

Pseudo-labeling Method	ONCE	ONCE Waymo L2 AP/APH						
6	Overall	Overall	Vehicle	Pedestrian	Cyclist	mAP	NDS	
SECOND (Low Performance)	57.10	65.96/63.29	65.95 / 65.46	66.87 / 60.36	65.07 / 64.06	41.49	50.82	
CenterPoint (Middle Performance)	60.84	66.79 / 64.10	67.09 / 66.60	67.79/61.16	65.51 / 64.55	41.91	51.64	
Ours (High Performance)	69.90	67.77 / 65.09	68.01 / 67.61	68.32 / 61.69	66.99 / 65.98	43.11	52.41	

Mao J, Niu M, Jiang C, et al. One million scenes for autonomous driving: Once dataset[J]. arXiv preprint arXiv:2106.11037, 2021.

Large-scale Point Cloud Dataset Preparation

- Class-aware pseudo labels generator
 - Class-aware Pseudo Labeling

Evaluate on ONCE validation set

Detector	Head Choice	Vehicle	Pedestrian	Cyclist
ONCE Benchmark (Best) CenterPoint (ours) PV-RCNN++ (ours)	Center Head Center Head Anchor Head	66.79 82.50	49.90 56.01	63.45 71.19

• Semi-supervised Data Labeling

Further improve the accuracy

https://once-for-auto-driving.github.io/benchmark.html

Large-scale Point Cloud Dataset Preparation

• Diversity-based Pre-training Processor

Highly diverse data can greatly improve the generalization ability of the model

- ◆ Data with More Beam-Diversity
- Range image as an intermediate variable for point data up-sampling and downsampling
- ♦ Data with More RoI-Diversity
- Randomly re-scale the length, width and height of each object

https://once-for-auto-driving.github.io/benchmark.html

Large-scale Point Cloud Dataset Preparation

Review of Autonomous Driving-related Pre-training

> Method: AD-PT

- Large-scale Point Cloud Dataset Preparation
- Learning Unified Representations

Learning Unified Representations under Large-scale Point Cloud Dataset

◆ Taxonomy difference

						-					
		Data	iset			classes					
		ONCE (P	re-train)			Car, Truck, Bus, Pedestrian, Cyclist					
	V	Vaymo (F	ine-tune)			Vehicle, Pedestrian, Cyclist					
	nı	uScenes (I	Fine-tune)	Car	, Truck, (ck, Construction vehicle, Bus, Trailer, Barrier, Motorcycle, Bicycle Pedestrian, Traffic cone					
]	KITTI (Fi	ne-tune)			Car, Pedestrian, Cyclist					
Undete	cted h	nard inst	ances								
ONCE labeled set Pseudo label set											
Vehicle	Ped.	Cyclist	Vehicle	Ped.	Cyclist	Be suppressed during the pre-					
19.01	4.52	5.63	15.67	1.63	1.90	training process					

Learning Unified Representations under Large-scale Point Cloud Dataset

- Consider as an open-set learning problem
- Consider background region proposals with relatively high objectness scores to be unknown instances
- Two-branch head as a committee
- Discover corresponding features using positional relationship

$$(\hat{\mathbf{F}}^{\Gamma_1}, \hat{\mathbf{F}}^{\Gamma_2}) = \{ (\tilde{f}_i^{\Gamma_1}, \tilde{f}_j^{\Gamma_2}) | \sqrt{(c_{i,x}^{\Gamma_1} - c_{j,x}^{\Gamma_2})^2 + (c_{i,y}^{\Gamma_1} - c_{j,y}^{\Gamma_2})^2 + (c_{i,z}^{\Gamma_1} - c_{j,z}^{\Gamma_2})^2} < \tau \}$$

• Consistency loss

$$\mathcal{L}_{consist} = \frac{1}{BK} \sum_{i=1}^{B} \sum_{j=1}^{K} (\hat{f}_{j}^{\Gamma_{1}} - \hat{f}_{j}^{\Gamma_{2}})^{2}$$

- Review of Autonomous Driving-related Pre-training
- Method: AD-PT
 - Large-scale Point Cloud Dataset Preparation
 - Learning Unified Representations

> Experimental Results

Results on Waymo

Method	Paradigm	Data		L2 AP	/ APH	
		amount	Overall	Vehicle	Pedestrian	Cyclist
From scratch (SECOND)	-	3%	52.00/37.70	58.11/57.44	51.34 / 27.38	46.57 / 28.28
From scratch (SECOND)	-	20%	60.62 / 56.86	64.26 / 63.73	59.72 / 50.38	57.87 / 56.48
ProposalContrast (SECOND) [30]	SS-PT	20%	60.91 / 57.16	64.50/63.90	60.33 / 51.00	57.90 / 56.60
BEV-MAE (SECOND) [12]	SS-PT	20%	61.03 / 57.30	64.42/63.87	59.97 / 50.65	58.69 / 57.39
MeanTeacher (SECOND) [20]	Semi	20%	60.93 / 57.31	64.22/63.73	59.54 / 50.80	58.66 / 57.41
Ours (SECOND)	AD-PT	3%	55.41 / 51.78	60.53 / 59.93	54.91 / 45.78	50.79 / 49.65
Ours (SECOND)	AD-PT	20%	61.26 / 57.69	64.54 / 64.00	60.25 / 51.21	59.00 / 57.86
From scratch (CenterPoint)	-	3%	59.00 / 56.29	57.12/56.57	58.66 / 52.44	61.24 / 59.89
From scratch (CenterPoint)	-	20%	66.47 / 64.01	64.91 / 64.42	66.03 / 60.34	68.49 / 67.28
GCC-3D (CenterPoint) [11]	SS-PT	20%	65.29 / 62.79	63.97 / 63.47	64.23 / 58.47	67.68 / 66.44
ProposalContrast (CenterPoint) [30]	SS-PT	20%	66.67 / 64.20	65.22 / 64.80	66.40 / 60.49	68.48 / 67.38
BEV-MAE (CenterPoint) [12]	SS-PT	20%	66.92/64.45	64.78/64.29	66.25 / 60.53	69.73 / 68.52
MeanTeacher (CenterPoint) [20]	Semi	20%	66.66 / 64.23	64.94 / 64.43	66.35 / 60.61	68.69 / 67.65
Ours (CenterPoint)	AD-PT	3%	61.21 / 58.46	60.35 / 59.79	60.57 / 54.02	62.73 / 61.57
Ours (CenterPoint)	AD-PT	20%	67.17 / 64.65	65.33 / 64.83	67.16 / 61.20	69.39 / 68.25
From scratch (PV-RCNN++)	-	3%	63.81 / 61.10	64.42/63.93	64.33 / 57.79	62.69 / 61.59
From scratch (PV-RCNN++)	-	20%	69.97 / 67.58	69.18/68.75	70.88 / 65.21	69.84 / 68.77
ProposalContrast (PV-RCNN++) [30]	SS-PT	20%	70.30/67.78	69.45 / 69.00	71.42 / 65.68	70.04 / 69.05
BEV-MAE (PV-RCNN++) [12]	SS-PT	20%	70.54 / 68.11	69.53 / 69.07	71.50 / 65.69	70.60 / 69.56
MeanTeacher (PV-RCNN++) [20]	Semi	20%	70.62/68.14	69.21 / 68.81	71.96 / 66.42	70.17 / 69.21
Ours (PV-RCNN++)	AD-PT	3%	68.33 / 65.69	68.17 / 67.70	68.82 / 62.39	68.00 / 67.00
Ours (PV-RCNN++)	AD-PT	20%	71.55/69.23	70.62 / 70.19	72.36 / 66.82	71.69 / 70.70

Results on nuScenes

Method	Setting	Data amount	mAP		Car		1	Pedestria	n		Cyclist	
			(Mod.)	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard
From scratch (SECOND)	-	20%	61.70	89.78	78.83	76.21	52.08	47.23	43.37	76.35	59.06	55.24
From scratch (SECOND)	-	100%	66.70	89.63	80.78	78.21	58.05	52.61	48.24	84.25	66.71	62.50
Ours (SECOND)	AD-PT	20%	65.95	90.23	80.70	78.29	55.63	49.67	45.12	83.78	67.50	63.40
Ours (SECOND)	AD-PT	100%	67.58	90.36	81.39	78.41	58.30	53.58	48.72	86.04	67.78	63.95
From scratch (PV-RCNN)	-	20%	66.71	91.81	82.52	80.11	58.78	53.33	47.61	86.74	64.28	59.53
ProposalContrast (PV-RCNN) [30]	SS-PT	20%	68.13	91.96	82.65	80.15	62.58	55.05	50.06	88.58	66.68	62.32
From scratch (PV-RCNN)	-	100%	70.57	-	84.50	-	-	57.06	-	-	70.14	-
GCC-3D (PV-RCNN) [11]	SS-PT	100%	71.26	-	-	-	-	-	-	-	-	-
STRL (PV-RCNN) [6]	SS-PT	100%	71.46	-	84.70	-	-	57.80	-	-	71.88	-
PointContrast (PV-RCNN) [24]	SS-PT	100%	71.55	91.40	84.18	82.25	65.73	57.74	52.46	91.47	72.72	67.95
ProposalContrast (PV-RCNN) [30]	SS-PT	100%	72.92	92.45	84.72	82.47	68.43	60.36	55.01	92.77	73.69	69.51
Ours (PV-RCNN)	AD-PT	20%	69.43	92.18	82.75	82.12	65.50	57.59	51.84	84.15	67.96	64.73
Ours (PV-RCNN)	AD-PT	100%	73.01	91.96	84.75	82.53	68.87	60.79	55.42	91.81	73.49	69.21

➢ Results on KITTI

Method	Setting	Data amount	mAP		Car		1	Pedestria	n		Cyclist	
			(Mod.)	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard
From scratch (SECOND)	-	20%	61.70	89.78	78.83	76.21	52.08	47.23	43.37	76.35	59.06	55.24
From scratch (SECOND)	-	100%	66.70	89.63	80.78	78.21	58.05	52.61	48.24	84.25	66.71	62.50
Ours (SECOND)	AD-PT	20%	65.95	90.23	80.70	78.29	55.63	49.67	45.12	83.78	67.50	63.40
Ours (SECOND)	AD-PT	100%	67.58	90.36	81.39	78.41	58.30	53.58	48.72	86.04	67.78	63.95
From scratch (PV-RCNN)	-	20%	66.71	91.81	82.52	80.11	58.78	53.33	47.61	86.74	64.28	59.53
ProposalContrast (PV-RCNN) [30]	SS-PT	20%	68.13	91.96	82.65	80.15	62.58	55.05	50.06	88.58	66.68	62.32
From scratch (PV-RCNN)	-	100%	70.57	-	84.50	-	-	57.06	-	-	70.14	-
GCC-3D (PV-RCNN) [11]	SS-PT	100%	71.26	-	-	-	-	-	-	-	-	-
STRL (PV-RCNN) [6]	SS-PT	100%	71.46	-	84.70	-	-	57.80	-	-	71.88	-
PointContrast (PV-RCNN) [24]	SS-PT	100%	71.55	91.40	84.18	82.25	65.73	57.74	52.46	91.47	72.72	67.95
ProposalContrast (PV-RCNN) [30]	SS-PT	100%	72.92	92.45	84.72	82.47	68.43	60.36	55.01	92.77	73.69	69.51
Ours (PV-RCNN)	AD-PT	20%	69.43	92.18	82.75	82.12	65.50	57.59	51.84	84.15	67.96	64.73
Ours (PV-RCNN)	AD-PT	100%	73.01	91.96	84.75	82.53	68.87	60.79	55.42	91.81	73.49	69.21

> Ablation studies on data preparation

Method	Enhancement		Waymo L2 AP/APH						
		Overall	Vehicle	Pedestrian	Cyclist	mAP	NDS		
Baseline	None	67.12/64.55	67.45 / 66.97	67.74/61.15	66.19/65.24	36.26	45.04		
Baseline+re-scaling	Object-size	67.39 / 64.68	67.52/67.03	67.82/61.24	66.83/65.79	39.72	49.93		
Baseline+re-sampling	LiDAR-beam	67.37 / 64.70	67.70/67.21	68.21/61.71	66.15/65.18	41.35	51.03		
Baseline+re-scaling+re-sampling	Both	67.77 / 65.09	68.01 / 67.61	68.32 / 61.69	66.99 / 65.98	43.11	52.41		

> Ablation studies on training algorithm

		•	-			
Method		nuScenes				
	Overall	Vehicle	Pedestrian	Cyclist	mAP	NDS
Baseline	67.77 / 65.09	68.01 / 67.61	68.32/61.69	66.99 / 65.98	43.11	52.41
Baseline+UIL	67.97 / 65.35	67.99 / 67.58	68.62 / 62.12	67.32 / 66.35	43.92	52.65
Baseline+UIL+CL	68.33 / 65.69	68.17 / 67.70	68.82 / 62.39	68.00 / 67.00	44.99	52.99

Increasing pre-training data

Pre-training dataset		Waymo L2	2 AP/APH	
The training tatabet	Overall	Vehicle	Pedestrian	Cyclist
KITTI (~4k)	64.28/63.16	64.73/64.19	64.43 / 57.30	63.69 / 62.60
ONCE ($\sim 4k$)	64.28 / 61.36	66.11/65.64	66.26 / 59.51	65.39/64.35
ONCE ($\sim 10k$)	66.94 / 64.24	67.41 / 66.91	67.97 / 61.39	65.45 / 64.43
ONCE (~100k)	68.33 / 65.69	68.17 / 67.70	68.82/62.39	68.00/67.00
ONCE (~500k)	69.04 / 66.52	68.69 / 68.23	69.81 / 63.74	68.61 / 67.60

Pre-training dataset		Waymo L	KITTI Moderate mAP					
	Overall	Vehicle	Pedestrian	Cyclist	Overall	Car	Pedestrian	Cyclist
ONCE (~100k)	68.33 / 65.69	68.17 / 67.70	68.82 / 62.39	68.00/67.00	69.43	82.75	57.59	67.96
ONCE (~500k)	69.04 / 66.52	68.69 / 68.23	69.81 / 63.74	68.61 / 67.60	71.36	83.17	58.14	72.78
ONCE (~1M)	69.63 / 67.08	69.03 / 68.57	70.54 / 64.34	69.33 / 68.33	72.37	83.47	59.84	73.81

➢ Increasing fine-tuning data

 \succ Fine-tuning on the same dataset

Init.		SEC	OND		CenterPoint				
	Overall	0-30m	30-50m	>50m	Overall	0-30m	30-50m	>50m	
Random Initialization AD-PT Initialization	56.47 64.10	65.94 74.34	51.05 57.69	36.44 41.23	64.94 67.73	74.52 76.48	59.47 61.85	44.28 46.29	

3DTrans Team

Fudan EDL Lab