

Combating Bilateral Edge Noise for Robust Link Prediction

Zhanke Zhou

Hong Kong Baptist University

with Jiangchao Yao, Jiaxu Liu, Xiawei Guo, Quanming Yao, Li He, Liang Wang, Bo Zheng, Bo Han

[NeurIPS'23 Paper]: <u>https://openreview.net/pdf?id=ePkLqJh5kw</u> [Code]: <u>https://github.com/tmlr-group/RGIB</u>

Outline

- Introduction
- Method
- Experiments
- Summary

Introduction | background

Graph: a general form of data expression

黄瓜

味

烧烤

味

Introduction | background

The link prediction task

- based on the observed links
- to predict the latent links between the nodes

node-level

Introduction | graph representation learning

• GNN for link prediction on graphs

decode: $\boldsymbol{\phi}_{uv} = \text{READOUT}(\boldsymbol{h}_u, \boldsymbol{h}_v) \rightarrow \mathbb{R}$ optimization: $\mathcal{L} = \sum_{e_{uv} \in \mathcal{E}^{train}} -y_{ij} \log(\boldsymbol{\phi}_{uv}) + (1 - y_{ij}) \log(1 - \boldsymbol{\phi}_{uv})$

Introduction | problem setup

Introduction | problem setup

In practical scenarios,

- the <u>observed graph</u> is often with <u>noisy edges</u> (input noise)
- the predictive graph often contains noisy labels (label noise)
- these two kinds of noise can exist at the same time (by random split)

Research problem: how to improve the robustness of GNNs under edge noise 🤪

Definition 3.1 (Bilateral edge noise). Given a clean training data, i.e., observed graph $\mathcal{G} = (A, X)$ and labels $Y \in \{0, 1\}$ of query edges, the noisy adjacence \tilde{A} is generated by directly adding edge noise to the original adjacent matrix A while keeping the node features X unchanged. The noisy labels \tilde{Y} are similarly generated by adding edge noise to the labels Y. Specifically, given a noise ratio ε_a , the noisy edges A' ($\tilde{A} = A + A'$) are generated by flipping the zero element in A as one with the probability ε_a . It satisfies that $A' \odot A = O$ and $\varepsilon_a = |nonzero(\tilde{A})| - |nonzero(A)|/|nonzero(A)|$. Similarly, noisy labels are generated and added to the original labels, where $\varepsilon_y = |nonzero(\tilde{Y})| - |nonzero(Y)|/|nonzero(Y)|$.

Introduction | problem setup

Link prediction performance in AUC with the bilateral edge noise

Inspecting the representation distribution:

Table 1: Mean values of alignment, which are calculated as the L2 distance of representations of two randomly perturbed graphs $\tilde{A}_1^i, \tilde{A}_2^i, i.e.$, $\texttt{Align} = \frac{1}{N} \sum_{i=1}^N || H_1^i H_2^i ||_2$. Representation $H_1^i = f_w(\tilde{A}_1^i, X)$ and $H_2^i = f_w(\tilde{A}_2^i, X)$.

dataset	Cora	Citeseer
clean	.616	.445
$\varepsilon = 20\%$.687	.586
$\varepsilon = 40\%$.695	.689
$\varepsilon \!=\! 60\%$.732	.696

Figure 4: Uniformity distribution on Cora dataset. Representations of query edges in the test set are mapped to unit circle of \mathbb{R}^2 with normalization followed by the Gaussian kernel density estimation as [35]. Both positive and negative edges are expected to be uniformly distributed.

representation collapse

Research problem: how to improve the robustness of GNNs under edge noise 🤪

Outline

- Introduction
- Method
- Experiments
- Summary

Graph Information Bottleneck (GIB)

However, GIB is intrinsically vulnerable to label noise since it entirely preserves the label supervision

Robust Graph Information Bottleneck (RGIB)

Definition 4.1 (Robust Graph Information Bottleneck). Based on the above analysis, we propose a new learning objective to balance informative signals regarding H, as illustrated in Fig. 5(a), i.e.,

$$\min RGIB \triangleq -I(\boldsymbol{H}; \tilde{Y}), \quad s.t. \; \gamma_{H}^{-} < H(\boldsymbol{H}) < \gamma_{H}^{+}, I(\boldsymbol{H}; \tilde{Y} | \tilde{A}) < \gamma_{Y}, \; I(\boldsymbol{H}; \tilde{A} | \tilde{Y}) < \gamma_{A}.$$
(2)

Specifically, constraints on $H(\mathbf{H})$ encourage a diverse \mathbf{H} to prevent representation collapse $(>\gamma_{H}^{-})$ and also limit its capacity $(<\gamma_{H}^{+})$ to avoid over-fitting. Another two MI terms, $I(\mathbf{H}; \tilde{Y} | \tilde{A})$ and $I(\mathbf{H}; \tilde{A} | \tilde{Y})$, mutually regularize posteriors to mitigate the negative impact of bilateral noise on \mathbf{H} . The complete derivation of RGIB and a further comparison of RGIB and GIB are in Appendix B.2.

Robust Graph Information Bottleneck

 $\min RGIB \triangleq -I(\boldsymbol{H}; \tilde{Y}), \quad s.t. \; \gamma_{H}^{-} < H(\boldsymbol{H}) < \gamma_{H}^{+}, I(\boldsymbol{H}; \tilde{Y} | \tilde{A}) < \gamma_{Y}, \; I(\boldsymbol{H}; \tilde{A} | \tilde{Y}) < \gamma_{A}.$

Two practical implementations of RGIB:

- RGIB-SSL explicitly optimizes the representation *H* with the self-supervised regularization
- RGIB-REP implicitly optimizes **H** by purifying the noisy \tilde{A} and \tilde{Y} with the reparameterization mechanism

RGIB with Self-Supervised Learning (RGIB-SSL)

$$\min \text{RGIB-SSL} \triangleq -\underbrace{\lambda_s(I(\boldsymbol{H}_1; \tilde{Y}) + I(\boldsymbol{H}_2; \tilde{Y}))}_{\text{supervision}} - \underbrace{\lambda_u(H(\boldsymbol{H}_1) + H(\boldsymbol{H}_2))}_{\text{uniformity}} - \underbrace{\lambda_aI(\boldsymbol{H}_1; \boldsymbol{H}_2)}_{\text{alignment}} - \underbrace{\lambda_aI(\boldsymbol{H}_1; \boldsymbol{H}_2)}_{\text{align$$

To achieve a tractable approximation of the MI terms 7

• we adopt the contrastive learning technique and contrast pair of samples,

• i.e., perturbed
$$\tilde{A}_1, \tilde{A}_2$$
 that are sampled from the augmentation distribution $\mathbb{P}(\tilde{A})$

$$\mathcal{R}_{align} = \sum_{i=1}^{N} \mathcal{R}_{i}^{pos} + \mathcal{R}_{i}^{neg}$$

$$\mathcal{R}_{unif} = \sum_{ij,mn}^{K} e^{-\|\boldsymbol{h}_{ij}^{1} - \boldsymbol{h}_{mn}^{1}\|_{2}^{2}} + e^{-\|\boldsymbol{h}_{ij}^{2} - \boldsymbol{h}_{mn}^{2}\|_{2}^{2}}$$

$$\mathcal{L} = \lambda_s \mathcal{L}_{cls} + \lambda_a \mathcal{R}_{align} + \lambda_u \mathcal{R}_{unif}$$

RGIB with Data Reparameterization (RGIB-REP)

$$\min \operatorname{RGIB}\operatorname{REP} \triangleq -\underbrace{\lambda_s I(\boldsymbol{H}; \boldsymbol{Z}_Y)}_{\text{supervision}} +\underbrace{\lambda_A I(\boldsymbol{Z}_A; \tilde{A})}_{\text{topology constraint}} + \underbrace{\lambda_Y I(\boldsymbol{Z}_Y; \tilde{Y})}_{\text{label constraint}}.$$

Latent variables Z_Y and Z_A are clean signals extracted from noisy \tilde{Y} and \tilde{A} .

• their complementary parts $Z_{Y'}$ and $Z_{A'}$ are considered as noise, satisfying $\tilde{Y} = Z_Y + Z_{Y'}$ and $\tilde{A} = Z_A + Z_{A'}$.

 $I(H; Z_Y)$ measures the supervised signals with selected samples Z_Y

 $I(Z_A; \tilde{A})$ and $I(Z_Y; \tilde{Y})$ help to select the clean and task-relevant information from \tilde{A} and \tilde{Y} .

Outline

- Introduction
- Method
- Experiments
- Summary

Experiments | Method comparison under bilateral noise

mathad	Cora		Citeseer		Pubmed		Facebook		Chameleon		Squirrel							
method	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8111	.7419	.6970	.7864	.7380	.7085	.8870	.8748	.8641	.9829	.9520	.9438	.9616	.9496	.9274	.9432	.9406	.9386
DropEdge	.8017	.7423	.7303	.7635	.7393	.7094	.8711	.8482	.8354	.9811	.9682	.9473	.9568	.9548	.9407	.9439	.9377	.9365
NeuralSparse	.8190	.7318	.7293	.7765	.7397	.7148	.8908	.8733	.8630	.9825	.9638	.9456	.9599	.9497	.9402	.9494	.9309	.9297
PTDNet	.8047	.7559	.7388	.7795	.7423	.7283	.8872	.8733	.8623	.9725	.9674	.9485	.9607	.9514	.9424	.9485	.9326	.9304
Co-teaching	.8197	.7479	.7030	.7533	.7238	.7131	.8943	.8760	.8638	.9820	.9526	.9480	.9595	.9516	.9483	.9461	.9352	.9374
Peer loss	.8185	.7468	.7018	.7423	.7345	.7104	.8961	.8815	.8566	.9807	.9536	.9430	.9543	.9533	.9267	.9457	.9345	.9286
Jaccard	.8143	.7498	.7024	.7473	.7324	.7107	.8872	.8803	.8512	.9794	.9579	.9428	.9503	.9538	.9344	.9443	.9327	.9244
GIB	.8198	.7485	.7148	.7509	.7388	.7121	.8899	.8729	.8544	.9773	.9608	.9417	.9554	.9561	.9321	.9472	.9329	.9302
SupCon	.8240	.7819	.7490	.7554	.7458	.7299	.8853	.8718	.8525	.9588	.9508	.9297	.9561	.9531	.9467	.9473	.9348	.9301
GRACE	.7872	.6940	.6929	.7632	.7242	.6844	.8922	.8749	.8588	.8899	.8865	.8315	.8978	.8987	.8949	.9394	.9380	.9363
RGIB-REP	<u>.8313</u>	.7966	<u>.7591</u>	. <u>7875</u>	.7519	.7312	<u>.9017</u>	.8834	<u>.8652</u>	.9832	.9770	<u>.9519</u>	.9723	.9621	.9519	.9509	.9455	.9434
RGIB-SSL	.8930	.8554	.8339	.8694	.8427	.8137	.9225	.8918	.8697	<u>.9829</u>	<u>.9711</u>	.9643	<u>.9655</u>	<u>.9592</u>	<u>.9500</u>	<u>.9499</u>	.9426	.9425

Experiments | Method comparison under *unilateral noise*

innut naisa		Cora		(Citeseer	•]	Pubmed	l	F	aceboo	k		hameleo	on	:	Squirrel	l
input noise	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	60%
Standard	.8027	.7856	.7490	.8054	.7708	.7583	.8854	.8759	.8651	.9819	.9668	.9622	.9608	.9433	.9368	.9416	.9395	.9411
DropEdge	.8338	.7826	.7454	.8025	.7730	.7473	.8682	.8456	.8376	.9803	.9685	.9531	.9567	.9433	.9432	.9426	.9376	.9358
NeuralSparse	.8534	.7794	.7637	.8093	.7809	.7468	.8931	.8720	.8649	.9712	.9691	.9583	.9609	.9540	.9348	.9469	.9403	<u>.9417</u>
PTDNet	.8433	.8214	.7770	.8119	.7811	.7638	.8903	.8776	.8609	.9725	.9668	.9493	.9610	.9457	.9360	.9469	.9400	.9379
Co-teaching	.8045	.7871	.7530	.8059	.7753	.7668	.8931	.8792	.8606	.9712	.9707	.9714	.9524	.9446	.9447	.9462	.9425	.9306
Peer loss	.8051	.7866	.7517	.8106	.7767	.7653	.8917	.8811	.8643	.9758	.9703	.9622	.9558	.9482	.9412	.9362	.9386	.9336
Jaccard	.8200	.7838	.7617	.8176	.7776	.7725	.8987	.8764	.8639	.9784	.9702	.9638	.9507	.9436	.9364	.9388	.9345	.9240
GIB	.8002	.8099	.7741	.8070	.7717	<u>.7798</u>	.8932	.8808	.8618	.9796	.9647	.9650	.9605	.9521	.9416	.9390	.9406	.9397
SupCon	.8349	.8301	.8025	.8076	.7767	.7655	.8867	.8739	.8558	.9647	.9517	.9401	.9606	.9536	.9468	.9372	.9343	.9305
GRACE	.7877	.7107	.6975	.7615	.7151	.6830	.8810	.8795	.8593	.9015	.8833	.8395	.8994	.9007	.8964	.9392	.9378	.9363
RGIB-REP	<u>.8624</u>	.8313	.8158	<u>.8299</u>	<u>.7996</u>	.7771	<u>.9008</u>	.8822	.8687	.9833	.9723	.9682	.9705	.9604	<u>.9480</u>	.9495	.9432	.9405
RGIB-SSL	.9024	.8577	.8421	.8747	.8461	.8245	.9126	.8889	.8693	<u>.9821</u>	<u>.9707</u>	<u>.9668</u>	<u>.9658</u>	<u>.9570</u>	.9486	<u>.9479</u>	<u>.9429</u>	.9429
label poise		Cora		(Citeseer]]	Pubmed	l	F	aceboo	k	C	hameleo	on	;	Squirrel	l
label noise	20%	Cora 40%	60%	20%	Citeseer 40%	60%	20%	Pubmed 40%	l 60%	F 20%	aceboo 40%	k 60%	C 20%	hameleo 40%	on 60%	20%	Squirrel 40%	60%
label noise	20%	Cora 40% .8054	60% .8060	20%	Citeseer 40% .7850	60% .7659	20%	Pubmed 40% .9039	60% .9070	F 20%	aceboo 40%	k 60% <u>.9886</u>	C1 20%	hameleo 40% .9580	on 60% .9362	20%	Squirrel 40% .9720	60% .9710
label noise Standard DropEdge	20% .8281 .8363	Cora 40% .8054 .8273	60% .8060 .8148	20% .7965 .7937	Citeseer 40% .7850 .7853	60% .7659 .7632	20% 20% .9030 .9313	Pubmed 40% .9039 .9201	60% .9070 .9240	F 20% .9882 .9673	aceboo 40% .9880 .9771	k 60% <u>.9886</u> .9776	C 20% .9686 .9580	hameleo 40% .9580 .9579	on 60% .9362 .9578	20% .9720 .9608	Squirrel 40% .9720 .9603	60% .9710 .9698
label noise Standard DropEdge NeuralSparse	20% .8281 .8363 .8524	Cora 40% .8054 .8273 .8246	60% .8060 .8148 .8211	20% .7965 .7937 .7968	Citeseer 40% .7850 .7853 .7921	.7659 .7632 .7752	20% 20% .9030 .9313 .9272	Pubmed 40% .9039 .9201 .9136	.9070 .9240 .9089	F 20% .9882 .9673 .9781	aceboo 40% .9880 .9771 .9781	k 60% <u>.9886</u> .9776 .9784	20% 20% .9686 .9580 .9583	hameleo 40% .9580 .9579 .9583	on 60% .9362 .9578 .9571	20% .9720 .9608 .9633	Squirrel 40% .9720 .9603 .9626	60% .9710 .9698 .9625
label noise Standard DropEdge NeuralSparse PTDNet	20% .8281 .8363 .8524 .8460	Cora 40% .8054 .8273 .8246 .8214	60% .8060 .8148 .8211 .8138	20% .7965 .7937 .7968 .7968	Citeseer 40% .7850 .7853 .7921 .7765	.7659 .7632 .7752 .7622	20% .9030 .9313 .9272 .9219	Pubmed 40% .9039 .9201 .9136 .9099	.9070 .9240 .9089 .9093	F 20% .9882 .9673 .9781 .9879	Faceboo 40% .9880 .9771 .9781 .9880	k 60% .9886 .9776 .9784 .9783	C 20% .9686 .9580 .9583 .9585	hameleo 40% .9580 .9579 .9583 .9576	on 60% .9362 .9578 .9571 .9665	20% .9720 .9608 .9633 .9633	Squirrel 40% .9720 .9603 .9626 .9623	60% .9710 .9698 .9625 .9626
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching	20% .8281 .8363 .8524 .8460 .8446	Cora 40% .8054 .8273 .8246 .8214 .8209	60% .8060 .8148 .8211 .8138 .8157	20% .7965 .7937 .7968 .7968 .7974	Citeseer 40% .7850 .7853 .7921 .7765 .7877	.7659 .7632 .7752 .7622 .7913	20% .9030 .9313 .9272 .9219 .9315	Pubmed 40% .9039 .9201 .9136 .9099 .9291	60% .9070 .9240 .9089 .9093 .9319	F 20% .9882 .9673 .9781 .9879 .9762	aceboo 40% .9880 .9771 .9781 .9880 .9797	k 60% .9886 .9776 .9784 .9783 .9638	C 20% .9686 .9580 .9583 .9585 .9642	hameleo 40% .9580 .9579 .9583 .9576 .9650	on 60% .9362 .9578 .9571 .9665 .9533	20% .9720 .9608 .9633 .9633 .9675	Squirrel 40% .9720 .9603 .9626 .9623 .9641	60% .9710 .9698 .9625 .9626 .9655
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss	20% .8281 .8363 .8524 .8460 .8446 .8325	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036	60% .8060 .8148 .8211 .8138 .8157 .8069	20% .7965 .7937 .7968 .7968 .7974 .7991	Citeseer 40% .7850 .7853 .7921 .7765 .7877 .7990	60% .7659 .7632 .7752 .7622 .7913 .7751	20% .9030 .9313 .9272 .9219 .9315 .9126	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101	60% .9070 .9240 .9089 .9093 .9319 .9210	F 20% .9882 .9673 .9781 .9879 .9762 .9769	aceboo 40% .9880 .9771 .9781 .9880 .9797 .9750	k 60% .9886 .9776 .9784 .9783 .9638 .9734	C 20% .9686 .9580 .9583 .9585 .9642 .9621	hameleo 40% .9580 .9579 .9583 .9576 .9650 .9501	0n 60% .9362 .9578 .9571 .9665 .9533 .9569	20% .9720 .9608 .9633 .9633 .9675 .9636	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694	60% .9710 .9698 .9625 .9626 .9655 .9696
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148	20% .7965 .7937 .7968 .7968 .7974 .7991 .8061	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135	.9070 .9240 .9089 .9093 .9319 .9210 .9096	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9702	in the second se	k 60% .9776 .9784 .9783 .9638 .9734 .9758	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603	hameleo 40% .9580 .9579 .9583 .9576 .9650 .9650 .9659	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852	.7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114	.9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064	F 20% .9673 .9781 .9879 .9762 .9769 .9702 .9742	in the second se	k 60% .9776 .9784 .9783 .9638 .9734 .9758 .9771	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651	hameleo 40% .9580 .9579 .9583 .9576 .9650 .9650 .9659 .9582	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9601
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986 .8024	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852 .7983	.7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7807	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108	.9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9702 .9742 .9647	Faceboo 40% .9880 .9771 .9781 .9880 .9797 .9750 .9725 .9703 .9567	k 60% .9786 .9784 .9783 .9783 .9638 .9734 .9758 .9771 .9553	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584	hameled 40% .9580 .9579 .9583 .9576 .9650 .9650 .9659 .9582 .9580	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9601 .9511
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon GRACE	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491 .8531	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275 .8237	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256 .8193	20% .7965 .7937 .7968 .7968 .7974 .7974 .7991 .8061 .7986 .8024 .7909	Citeseer 40% .7850 .7853 .7921 .7765 .7877 .7990 .7887 .7852 .7983 .7630	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7807 .7737	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131 .9234	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108 .9252	60% .9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162 .9255	F 20% .9882 .9673 .9781 .9879 .9762 .9769 .9762 .9742 .9742 .9647 .8913	Faceboo 40% .9880 .9771 .9781 .9880 .9797 .9750 .9703 .9567 .8972	k 60% .9786 .9776 .9784 .9783 .9638 .9734 .9758 .9771 .9553 .8887	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584 .9053	hameled 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659 .9582 .9580 .9074	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477 .9075	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516 .9171	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595 .9174	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9601 .9511 .9166
label noise Standard DropEdge NeuralSparse PTDNet Co-teaching Peer loss Jaccard GIB SupCon GRACE RGIB-REP	20% .8281 .8363 .8524 .8460 .8446 .8325 .8289 .8337 .8491 .8531 <u>.8554</u>	Cora 40% .8054 .8273 .8246 .8214 .8209 .8036 .8064 .8137 .8275 .8237 .8238	60% .8060 .8148 .8211 .8138 .8157 .8069 .8148 .8157 .8256 .8193 .8297	20% .7965 .7937 .7968 .7968 .7974 .7991 .8061 .7986 .8024 .7909 <u>.8083</u>	Citeseer 40% .7850 .7853 .7921 .7765 .7877 <u>.7990</u> .7887 .7852 .7983 .7630 .7846	60% .7659 .7632 .7752 .7622 .7913 .7751 .7689 .7649 .7649 .7807 .7737 .7945	20% .9030 .9313 .9272 .9219 .9315 .9126 .9098 .9037 .9131 .9234 .9357	Pubmed 40% .9039 .9201 .9136 .9099 .9291 .9101 .9135 .9114 .9108 .9252 .9343	60% .9070 .9240 .9089 .9093 .9319 .9210 .9096 .9064 .9162 .9255 <u>.9332</u>	F 20% .9673 .9781 .9789 .9762 .9769 .9762 .9769 .9702 .9742 .9647 .8913 .9884	Faceboo 40% .9880 .9771 .9781 .9780 .9750 .9750 .9725 .9703 .9567 .8972 .9883	k 60% .9786 .9776 .9784 .9783 .9638 .9734 .9758 .9771 .9553 .8887 .9889	C 20% .9686 .9580 .9583 .9585 .9642 .9621 .9603 .9651 .9584 .9053 .9785	hameled 40% .9580 .9579 .9583 .9576 .9650 .9501 .9659 .9582 .9580 .9074 .9074	on 60% .9362 .9578 .9571 .9665 .9533 .9569 .9557 .9489 .9477 .9075 .9785	20% .9720 .9608 .9633 .9633 .9675 .9636 .9529 .9641 .9516 .9171 .9735	Squirrel 40% .9720 .9603 .9626 .9623 .9641 .9694 .9512 .9628 .9595 .9174 .9733	60% .9710 .9698 .9625 .9626 .9655 .9696 .9501 .9501 .9501 .9511 .9166 .9737

Experiments | The learned *representations*

Table 5: Comparison of alignment. Here, std. is short for *standard train-ing*, and SSL/REP are short for RGIB-SSL/RGIB-REP, respectively.

dataset		Cora		Citeseer			
method	std.	REP	SSL	std.	REP	SSL	
clean	.616	.524	.475	.445	.439	.418	
$\varepsilon\!=\!20\%$.687	.642	.543	.586	<u>.533</u>	.505	
$\varepsilon \!=\! 40\%$.695	.679	.578	.689	.623	.533	
$\varepsilon = 60\%$.732	<u>.704</u>	.615	.696	<u>.647</u>	.542	

Experiments | Ablation study

Table 6: Comparison on different schedulers. SSL/REP are short for RGIB-SSL/RGIB-REP. Experiments are performed with a 4-layer GAT and $\epsilon = 40\%$ mixed edge noise.

dataset	Co	ora	Cite	seer	Pubmed		
method	SSL	REP	SSL	REP	SSL	REP	
constant	.8398	.7927	.8227	.7742	.8596	.8416	
$linear(\cdot)$.8427	.7653	.8167	.7559	.8645	.8239	
$sin(\cdot)$.8436	.7924	.8132	.7680	.8637	.8275	
$cos(\cdot)$.8334	.7833	.8088	.7647	.8579	.8372	
$exp(\cdot)$.8381	.7815	.8085	.7569	.8617	.8177	

Figure 7: Grid search of hyper-parameter with RGIB-SSL (left) and RGIB-REP (right) on Cora dataset with bilateral noise $\epsilon = 40\%$. As can be seen, neither too large nor too small value can bring a good solution.

(a) RGIB-SSL on Cora (b) RGIB-SSL on Citeseer (c) RGIB-REP on Cora (d) RGIB-REP on Citeseer Figure 8: Learning curves of RGIB-SSL and RGIB-REP with $\varepsilon = 40\%$ bilateral noise.

Table 8:	Ablation study	for RGIB-SSL	and RGIB-REP	with a 4-layer	SAGE. Here, $\epsilon =$	60% indicates
the 60%	bilateral noise	, while the ϵ_a/ϵ_i	, represent ratio	s of unilateral	input/label noise	

ł	variant	$\epsilon = 60\%$	$\begin{array}{c} \text{Cora} \\ \epsilon_a = 60\% \end{array}$	$\epsilon_y = 60\%$	$\epsilon = 60\%$	Chameleon $\epsilon_a = 60\%$	$\epsilon_y = 60\%$
	RGIB-SSL (full) - w/o hybrid augmentation - w/o self-adversarial - w/o supervision ($\lambda_s = 0$) - w/o alignment ($\lambda_a = 0$)	.8596 .8150 (5.1%↓) .8410 (2.1%↓) .7480 (12.9%↓) .8194 (4.6%↓)	.8730 .8604 (1.4%↓) .8705 (0.2%↓) .7810 (10.5%↓) .8510 (2.5%↓)	.8994 .8757 (2.6%↓) .8927 (0.7%↓) .7820 (13.0%↓) .8461 (5.9%↓)	.9663 .9528 (1.3%↓) .9655 (0.1%↓) .8626 (10.7%↓) .9613 (0.5%↓)	.9758 .9746 (0.1% \downarrow) .9732 (0.2% \downarrow) .8628 (11.5% \downarrow) .9749 (0.1% \downarrow)	.9762 .9695 $(0.6\%\downarrow)$.9746 $(0.1\%\downarrow)$.8512 $(12.8\%\downarrow)$.9722 $(0.4\%\downarrow)$
ł.	- w/o uniformity ($\lambda_u = 0$)	.8355 (2.8%↓)	.8621 (1.2%↓)	.8878 (1.3%↓)	.9652 (0.1%↓)	.9710 (0.4%↓)	.9751 (0.1%↓)
5	RGIB-REP (full)	.7611	.8487	.8095	.9567	.9706	.9676
	- w/o edge selection $(Z_A \equiv A)$ w/o label selection $(Z_{-x} \equiv \tilde{Y})$	$.7515(1.2\%\downarrow)$	$.8199(3.3\%\downarrow)$.7890 (2.5%↓)	$.9554(0.1\%\downarrow)$.9/04 (0.1%)	$.9661(0.1\%\downarrow)$
l	- w/o table selection $(Z_Y \equiv T)$ - w/o topology constraint $(\lambda_A = 0)$ - w/o label constraint $(\lambda_Y = 0)$.7355 (1.0%↓) .7355 (3.3%↓) .7381 (3.0%↓)	.7699 (9.2%) .8106 (4.4%)	$.7969 (1.5\%\downarrow)$ $.8032 (0.7\%\downarrow)$.9434(0.8%) .9503(0.6%) .9443(1.2%)	.9658 $(0.4\%\downarrow)$.9658 $(0.4\%\downarrow)$.9665 $(0.4\%\downarrow)$.9635 (0.8%) .9635 (0.4%) .9669 (0.1%)

Table 7: Method comparison with a 4-layer GCN trained on the clean data.

method	Cora	Citeseer	Pubmed	Facebook	Chameleon	Squirrel
Standard	.8686	.8317	.9178	.9870	.9788	.9725
DropEdge	.8684	.8344	.9344	.9869	.9700	.9629
NeuralSparse	.8715	.8405	.9366	.9865	.9803	.9635
PTDNet	.8577	.8398	.9315	.9868	.9696	.9640
Co-teaching	.8684	.8387	.9192	.9771	.9698	.9626
Peer loss	.8313	.7742	.9085	.8951	.9374	.9422
Jaccard	.8413	.8005	.8831	.9792	.9703	.9610
GIB	.8582	.8327	.9019	.9691	.9628	.9635
SupCon	.8529	.8003	.9131	.9692	.9717	.9619
GRACE	.8329	.8236	.9358	.8953	.8999	.9165
RGIB-REP	.8758	.8415	.9408	.9875	.9792	.9680
RGIB-SSL	.9260	.9148	.9593	.9845	.9740	.9646

Outline

- Introduction
- Method
- Experiments
- Summary

Take home messages

- I. In this work, we study the problem of link prediction with the **bilateral edge noise**.
- 2. We propose the **Robust Graph Information Bottleneck (RGIB)** principle, aiming to extract reliable signals via decoupling and balancing the mutual information among inputs, labels, and representation.
- 3. Regarding the instantiation of RGIB, the self-supervised learning technique and data reparametrization mechanism are utilized to establish the *RGIB-SSL and RGIB-REP*, respectively.
- 4. Empirical studies verify the denoising effect of the proposed RGIB under different noisy scenarios.

Thanks for your listening!

Zhanke Zhou cszkzhou@comp.hkbu.edu.hk