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Background

The problem ?

RSeveral tasks are ill-posed and ambiguous by nature.
RIf p(y | x) is multimodal, the conditional mean E(Yx), where
Yx ∼ p(y | x), may be not informative enough.
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Background

Multiple choice learning

RConsider several hypotheses
[Guzman-Rivera et al., 2012]

fθ ≜
(
f1
θ , . . . , f

K
θ

)
∈ F

(
X ,YK

)
.

RWinner-Takes-All (WTA) loss for a set of hypotheses (sMCL,
[Lee et al., 2016])

L (fθ (xs) ,ys) ≜ min
k∈J1,KK

ℓ
(
fk
θ (xs) ,ys

)
.

RIf a set of targets Ys is available for each xs: same for each y ∈ Ys

[Firman et al., 2018].
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Toy experiment

How does it work in practice ?

Let X = [0, 1], and Y = [−1, 1]2.
2D dist. to predict from input scalar x ∈ X [Rupprecht et al., 2017].
Input-output pairs available {(xN ,yN )} where yN ∼ p (y | xN ).
Below: ground-truth dist. (green points) for several inputs.
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Toy experiment

Properties

Hypotheses

Samples 
from 

Zoomed prediction of sMCL at x = 0
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Toy experiment

Properties

Hypotheses

Cells centroids

Samples 
from 

Centroidal property: fk
θ (x) = E

[
Yx | Yx ∈ Yk(x)

]
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Toy experiment

Properties

Inactive cell

Active cell

Hypotheses

Cells centroids

Samples 
from 

In inactive cells the predictions fk
θ (x) are meaningless (overconfidence).
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Overconfidence solving

Proposed solution

Optimization criterion adapted for overconfidence solving.
Proposition: hypothesis scoring heads γ1

θ, . . . ,γ
K
θ ∈ F(X , [0, 1]), to

predict P(Yx ∈ Yk(x)) ([Tian et al., 2019] adapted for regression).
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Overconfidence solving

rMCL output

Hypotheses

Cells centroids

Samples 
from 

Overconfidence solving in rMCL (with scores displayed in the colorbar).
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Probabilistic interpretation

Probabilistic interpretation proposed at inference

If Yx ∼ p(y | x), interpret the heads inference time predictions as

γk
θ(x) = P

(
Yx ∈ Yk(x)

)
, (1)

and for k ∈ [[1,K]] such that γk
θ(x) > 0

fk
θ (x) = E

[
Yx | Yx ∈ Yk(x)

]
. (2)

Example of probabilistic interpretation (justified in the paper)

p̂(y | x) =
K∑
k=1

γk
θ(x)δfk

θ (x)
(y). (3)
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Sound Source Localization

Audio application: Sound source localization

Multichannel 
input audio

Angular positions of the sources 

Sound source localization (SSL).
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Sound Source Localization

Audio application: Sound source localization

With rMCL: No permutation / imbalance spatial data (smart
grid).
No need to know the number of sources in advance.
Probabilistic output interpretation.

Target dist. p(y |x) ∝
∑

yt∈Yt
δyt

(y).
Predicted dist. (rMCL) p̂(y |x) ∝

∑K
k=1 γ

k
θ(x)δfk

θ (x)
(y)
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Sound Source Localization

Experimental setup

Datasets. Several datasets (anechoic, reverberant conditions)
[Adavanne et al., 2018].
Metrics. ‘Oracle’ (↓): Quality of the best hypotheses.
Earth Mover’s Distance (↓) between p̂(y |x) and p(y |x)
Neural network backbone CRNN [Adavanne et al., 2018].
Baselines IE, WTA variants, PIT variant
[Lee et al., 2016, Rupprecht et al., 2017, Adavanne et al., 2018, Yu et al., 2017,
Schymura et al., 2021, Makansi et al., 2019].
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Sound Source Localization

Experiments

Comparisons in unimodal and multimodal conditions.
rMCL: solves overconfidence issue of sMCL (vanilla WTA).
Competitive, esp. in multimodal setting.
rMCL: orthogonal to WTA variants (e.g., top-n-WTA, ε-WTA).
Sensitivity analysis performed: metrics trade-off when K increases.
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Conclusion

Thank You!

Poster#1220
Arxiv: arxiv.org/abs/2311.01052
Code: github.com/Victorletzelter/code-rMCL
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