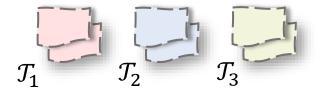
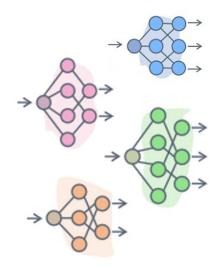
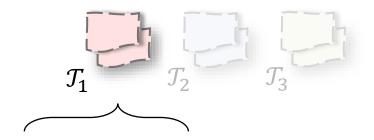

Model Spider: Learning to Rank Pre-Trained Models Efficiently

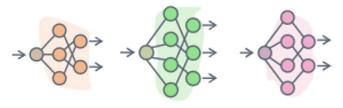
Yi-Kai Zhang¹, Ting-Ji Huang¹, Yao-Xiang Ding², De-Chuan Zhan¹, Han-Jia Ye^{1,⊠} zhangyk@lamda.nju.edu.cn


NeurIPS 2023 [Spotlight]


We introduces Model Spider, a novel approach for efficiently selecting the most suitable Pre-Trained Model (PTM) for a given task. It tokenizes both PTMs and tasks into vector-representations and uses approximated performance on historical tasks to rank PTMs.

Target Tasks

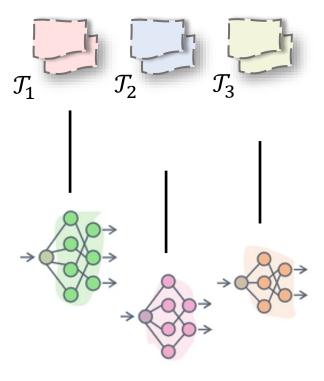

Target Tasks



Pre-trained Models

Target Tasks

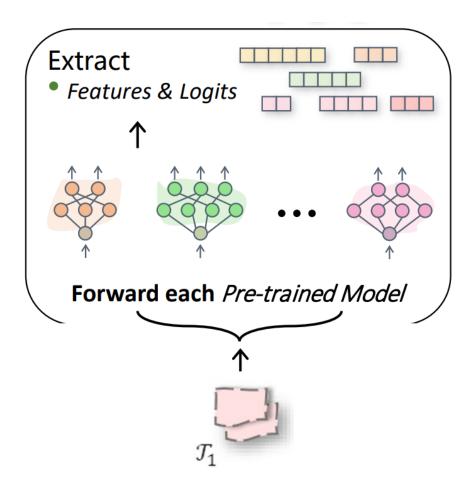
Pre-trained Models



Fine-tuned performance: 85%

93%

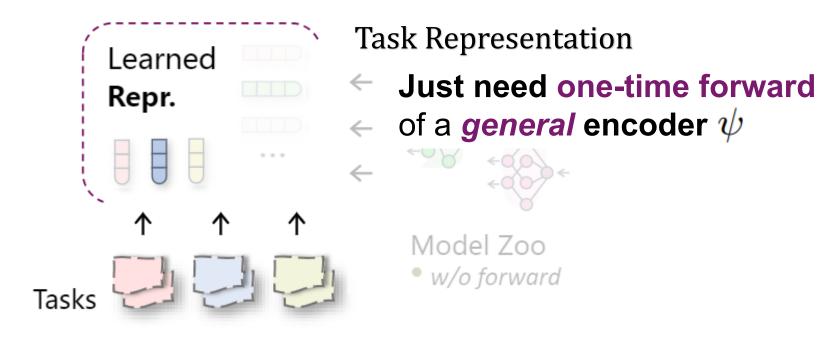
73%


Target Tasks

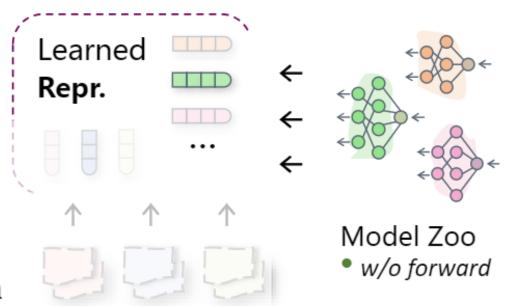
Pre-trained Model Selection

selecting suitable pre-trained models for target tasks

Previous Works

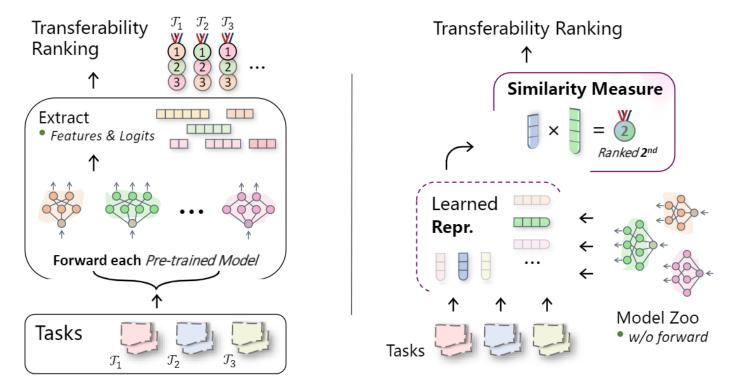


To select on M pre-trained models

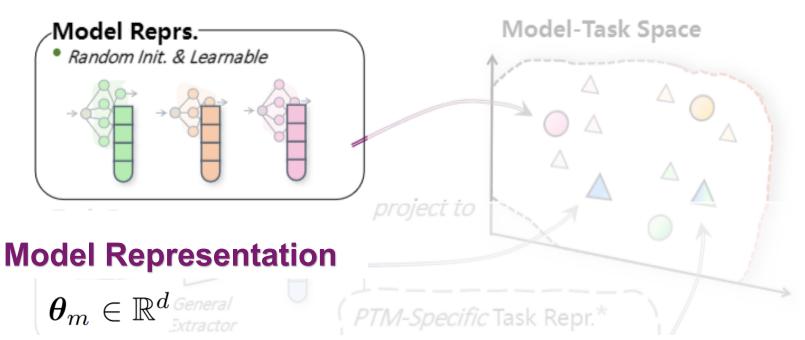

1 task, but M forwards

If *M* is large?

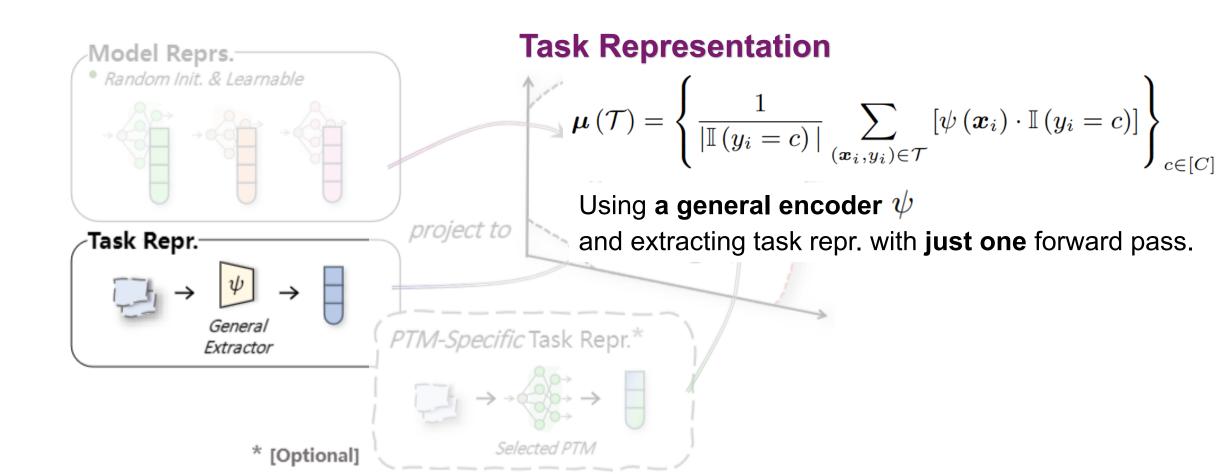
Our Solution

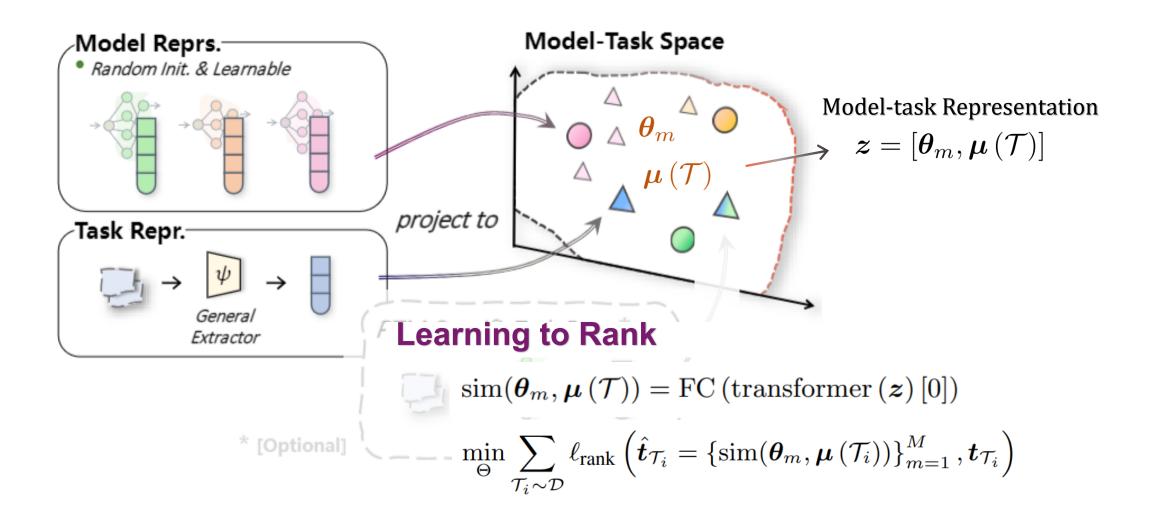


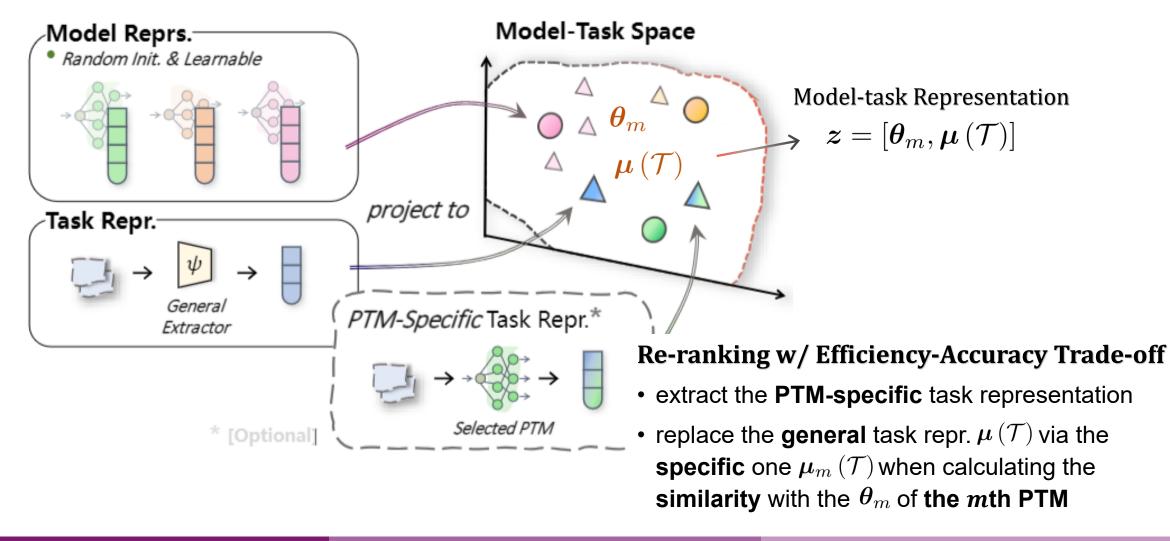
Our Solution


Model Representation

Learn model representation through *historical* task performance

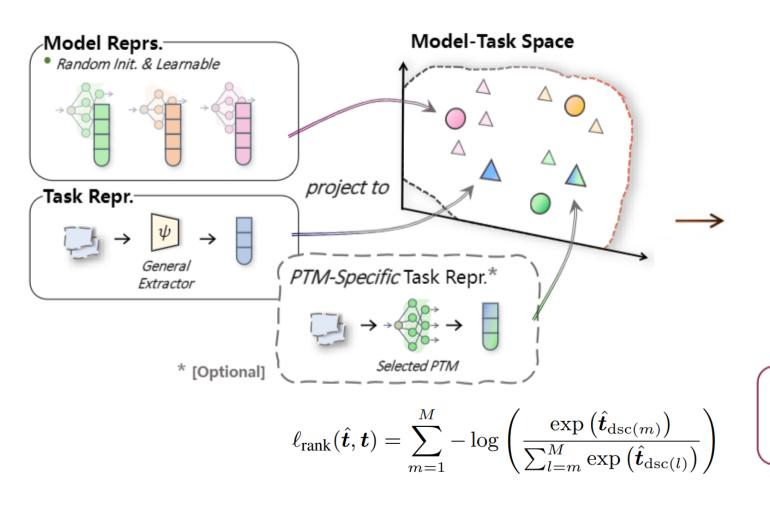

Forward-Based and Representation/Specification-Based Model Selection

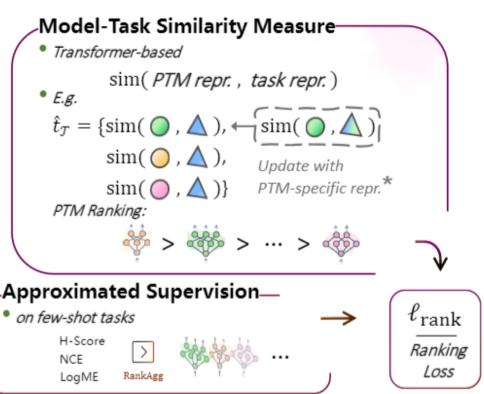

Forward-based methods require forwarding **for each pre-trained model** which still incurs significant overhead!

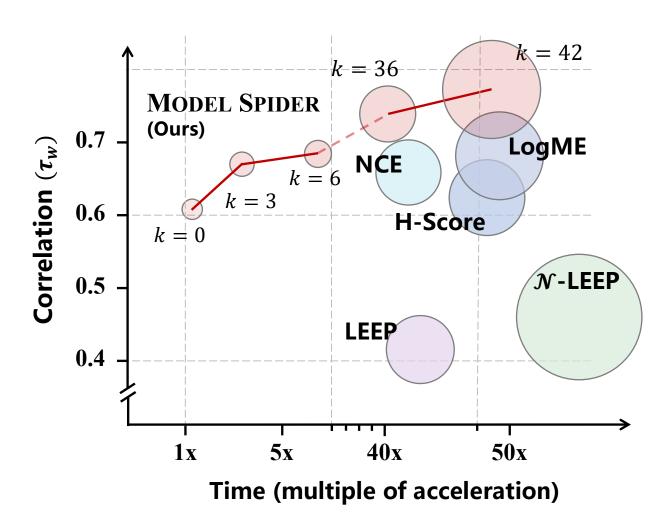


Learning model representation in a supervised learning manner

learnable parameters randomly initialized and optimized through the training process.






Method Overview

Model Spider: Learning to rank pre-trained models with model and task representation

Result

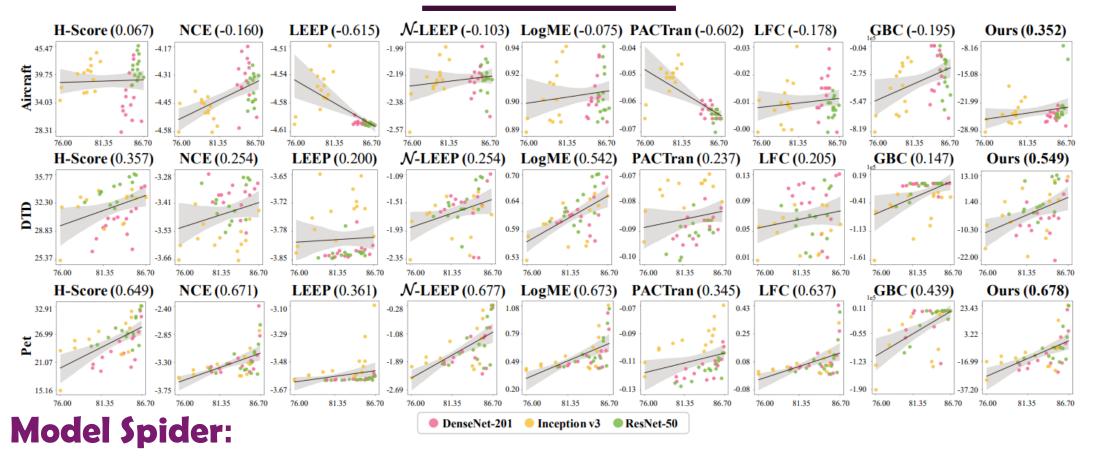
Model Spider:

Efficiency-Accuracy Trade-off

The circle sizes indicate the memory footprint. Red circles are our method with different values of the number of PTM-specific features k

Result

				•					
Method	Downstream Target Dataset Aircraft Caltech101 Cars CIFAR10 CIFAR100 DTD					Pets	SUN397	Mean	
<u> </u>									
Standard Evaluati									
H-Score [8]	0.328	0.738	0.616	0.797	0.784	0.395	0.610	0.918	0.648
NCE [73]	0.501	0.752	0.771	0.694	0.617	0.403	0.696	0.892	0.666
LEEP [53]	0.244	0.014	0.704	0.601	0.620	-0.111	0.680	0.509	0.408
\mathcal{N} -LEEP [45]	-0.725	0.599	0.622	0.768	0.776	0.074	0.787	0.730	0.454
LogME [83]	0.540	0.666	0.677	0.802	0.798	0.429	0.628	0.870	0.676
PACTran [21]	0.031	0.200	0.665	0.717	0.620	-0.236	0.616	0.565	0.397
OTCE [72]	-0.241	-0.011	-0.157	0.569	0.573	-0.165	0.402	0.218	0.149
LFC [19]	0.279	-0.165	0.243	0.346	0.418	-0.722	0.215	-0.344	0.034
GBC [56]	-0.744	-0.055	-0.265	0.758	0.544	-0.102	0.163	0.457	0.095
MODEL SPIDER	0.506	0.761	0.785	0.909	1.000	0.695	0.788	0.954	0.800
Few-Shot Evaluation (10-example per class)									
H-Score [8]	-0.014	0.078	0.375	0.018	0.005	-0.028	-0.006	0.853	0.160
NCE [73]	0.273	0.534	0.597	0.267	0.232	0.362	0.352	0.793	0.426
LEEP [53]	0.069	-0.038	0.476	0.530	0.471	-0.111	0.567	0.468	0.304
N-LEEP [45]	-0.559	0.476	0.743	0.515	0.707	0.027	0.713	0.812	0.429
LogME [83]	0.341	0.453	0.497	0.718	0.698	0.407	0.657	0.817	0.574
PACTran [21]	0.136	0.262	0.484	0.631	0.614	-0.227	0.701	0.477	0.385
OTCE [72]	-0.316	-0.050	-0.127	0.515	0.505	-0.168	0.406	0.210	0.123
LFC [19]	0.226	-0.226	-0.235	0.330	0.271	-0.669	-0.059	-0.151	-0.064
MODEL SPIDER	0.382	0.711	0.727	0.870	0.977	0.686	0.717	0.933	0.750


Dataset	Methods for Regression Tasks						
Dataset	H-Score	LogME	GBC	Ours			
dSprites UTKFace		0.612 -0.156	-0.283 0.052	0.679 0.364			

Model Spider:

State-of-the-art on single-source heterogeneous pre-trained model zoo

10 PTMs pre-trained on ImageNet across five architecture families

Result

State-of-the-art on multi-source heterogeneous pre-trained model zoo

42 PTMs pre-trained on **14** datasets including animals, general and 3D objects, plants, scenebased, remote sensing and multi-domain recognition.

Result on Ranking LLMs

Mothod	Downstream Target Dataset								
Method	Exam.	Language	Knowledge	Understand.	Reason.	Mean			
LLM Evaluations									
Alpaca-7B [93]	24.30	67.20	41.95	33.30	51.70	43.69			
ChatGLM2-6B [115]	39.00	67.30	44.35	40.25	68.67	51.91			
LLaMA2-7B [95]	31.30	67.40	55.90	40.30	52.93	49.57			
Vicuna-7B [118]	29.10	66.70	49.45	34.70	52.67	46.52			
ChatGPT [68]	39.90	60.90	57.10	55.40	69.90	56.64			
Top-1 Results of LLM Ranking Methods, Selected by									
Self-assessed Confidence	34.60	67.40	45.10	37.45	62.60	49.43			
Perf. on Similar Tasks	29.10	67.20	44.35	53.45	63.03	51.43			
MODEL SPIDER	41.30	67.65	55.90	56.80	70.07	58.34			

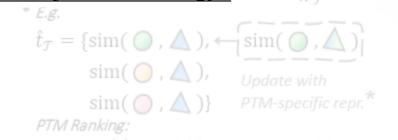
Model Spider:

State-of-the-art on a pre-trained model zoo of 9 Large Language Models

Top-1 ranked LLM performance comparisons against LLM evaluation results including **2** directly baselines, as ranking by self-assessed and performance on similar task **10** downstream tasks are constructed based on the **OpenCompass*** benchmark

^{*:} Opencompass: A universal evaluation platform for foundation models

Random Init. & Learnable



Yi-Kai Zhang's Homepage

lamda.nju.edu.cn/zhangyk

Task Repr

$$\ell_{\text{rank}}(\hat{\boldsymbol{t}}, \boldsymbol{t}) = \sum_{m=1}^{M} -\log\left(\frac{\exp}{\sum_{l=m}^{M}}\right)$$

GitHub Page

github.com/zhangyikaii/Model-Spider

