

Learning Energy-Based Prior Model with Diffusion-Amortized MCMC

Peiyu Yu¹, Yaxuan Zhu¹, Sirui Xie¹, Xiaojian Ma^{1,2}, Ruiqi Gao³, Ying Nian Wu¹, Song-Chun Zhu²

¹UCLA, ²BIGAI, ³Google DeepMind

Overview

How to learn the latent space energy-based prior model through MLE?

MLE Pros:

- Principled
- Good asymptotic properties
- Etc.

MLE Cons:

- Requires MCMC
- Short-run MCMC is biased
- Long-run MCMC is slow

Our Solution: Diffusion-Based Amortization of MCMC

Background: Latent Space Energy-Based Prior Model

Complete data distribution:

$$p_{\theta}(\boldsymbol{z}, \boldsymbol{x}) := p_{\alpha}(\boldsymbol{z}) p_{\beta}(\boldsymbol{x}|\boldsymbol{z}), \ p_{\alpha}(\boldsymbol{z}) := \frac{1}{Z_{\alpha}} \exp\left(f_{\alpha}(\boldsymbol{z})\right) p_{0}(\boldsymbol{z}),$$

Learning gradients of the prior model:

$$\delta_{\boldsymbol{\alpha}}(\boldsymbol{x}) := \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})} \left[\nabla_{\boldsymbol{\alpha}} f_{\boldsymbol{\alpha}}(\boldsymbol{z}) \right] - \mathbb{E}_{p_{\boldsymbol{\alpha}}(\boldsymbol{z})} \left[\nabla_{\boldsymbol{\alpha}} f_{\boldsymbol{\alpha}}(\boldsymbol{z}) \right], \ \delta_{\boldsymbol{\beta}}(\boldsymbol{x}) := \mathbb{E}_{p_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})} \left[\nabla_{\boldsymbol{\beta}} \log p_{\boldsymbol{\beta}}(\boldsymbol{x}|\boldsymbol{z}) \right].$$

Langevin dynamics for sampling:

$$z_{t+1} = z_t + \frac{s^2}{2} \nabla_{z_t} \log \pi(z_t) + s w_t, \ t = 0, 1, ..., T - 1, \ w_t \sim \mathcal{N}(0, \mathbf{I}_d)$$

Amortizing MCMC

$$q_{\boldsymbol{\phi}_k} \leftarrow \underset{q_{\boldsymbol{\phi}} \in \mathcal{Q}}{\arg\min} \mathcal{D}[q_{\boldsymbol{\phi}_{k-1},T} || q_{\boldsymbol{\phi}}], \ q_{\boldsymbol{\phi}_{k-1},T} := \mathcal{K}_T q_{\boldsymbol{\phi}_{k-1}}, \ q_{\boldsymbol{\phi}_0} \approx \pi_0, \ k = 0, ..., K-1.$$

Given the transition kernel K:

- a) Employ a T-step short-run LD initialized with the current sampler $q_{\phi_{k-1}}$ to approximate $K_T q_{\phi_{k-1}}$ as the target distribution of the current sampler
- b) Update the current sampler $q_{\phi_{k-1}}$ to q_{ϕ_k}

Diffusion-based amortization:

$$\boldsymbol{\phi}_{k-1}^{(i+1)} \leftarrow \boldsymbol{\phi}_{k-1}^{(i)} - \eta \nabla_{\boldsymbol{\phi}} \mathbb{E}_{\boldsymbol{\epsilon},\lambda} \left[\| \boldsymbol{\epsilon}(\boldsymbol{z}_{\lambda}) - \boldsymbol{\epsilon} \|_{2}^{2} \right], \ \boldsymbol{\phi}_{k}^{(0)} \leftarrow \boldsymbol{\phi}_{k-1}^{(M)}, \ i = 0, 1, ..., M - 1$$

- a) For the choice of q_{ϕ} , let us consider distilling the gradient field of target q in each iteration, so that the resulting sampler is close to the target distribution.
- b) This naturally points to the DDPMs. To be specific, learning a DDPM with εprediction parameterization is equivalent to fitting the finite-time marginal of a sampling chain resembling annealed LD.
- c) We can plug in the objective of DDPM, which is a lower bound of $\log q_{\phi}$, to obtain the gradient-based update rule for q_{ϕ} .

Diffusion-based amortization:

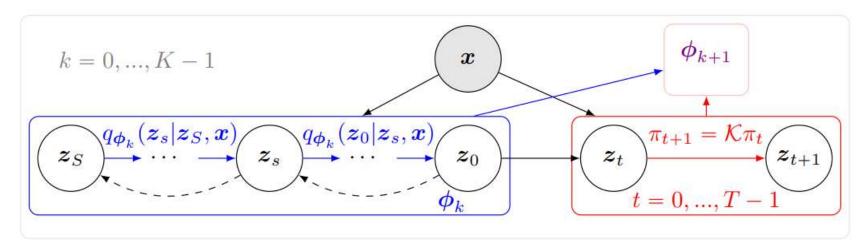
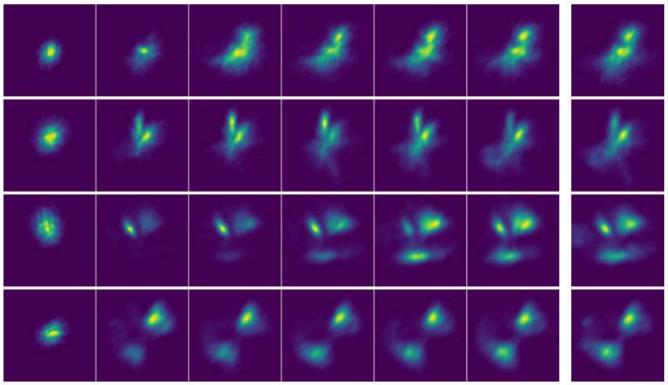


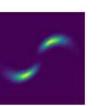
Figure 1: Learning the DAMC sampler. The training samples for updating the sampler to ϕ_{k+1} is obtained by *T*-step short-run LD, initialized with the samples from the current learned sampler ϕ_k . Best viewed in color.

Experiments

Amortizing Long-Run (1k-3k stps.) MCMC



(a) Evolution of the learned posterior distributions



The 2-arm pinwheel-shaped prior distribution used in the toy example.

Neural likelihood experiment:

- a) The true posterior distributions are multimodal.
- b) Posterior obtained by performing LD sampling until convergence.
- c) Our method can amortize long-run chains w/ the length of 1k-3k steps.

(b) GT

Experiments

Generation and Inference: Prior and Posterior Sampling

CUC 12 5 3 10 0				Model	SVHN		CelebA		CIFAR-10		CelebA-HQ	
818 2 3 3 3 2 2					MSE	FID	MSE	FID	MSE	FID	MSE	FID
GV8 3 0 0 4 86				VAE [1]	0.019	46.78	0.021	65.75	0.057	106.37	0.031	180.49
		And a second second second		2s-VAE [48]	0.019	42.81	0.021	44.40	0.056	72.90	-	-
				RAE [49]	0.014	40.02	0.018	40.95	0.027	74.16	-	-
		10 10 10 10 10 10 10 10 10 10 10 10 10 1		NCP-VAE [50]	0.020	33.23	0.021	42.07	0.054	78.06		-
KERIDIOUS S				Adaptive CE* [41]	<u>0.004</u>	26.19	0.009	35.38	0.008	65.01		
4 B 319 B 00 52		L WELLES -		ABP [51]	-	49.71	-	51.50	0.018	90.30	0.025	160.21
DATE OF A REAL PROPERTY	9		CARADA	SRI [24]	0.018	44.86	0.020	61.03	-	-))	-
A DIVINI JSL				SRI (L=5) [24]	0.011	35.32	0.015	47.95	-	-	-	-
(a) SVHN	(b) CelebA	(c) CIFAR-10	(d) CelebA-HQ	LEBM [22]	0.008	29.44	0.013	37.87	0.020	70.15	0.025	133.07
Figure 2: Samples generated from the DAMC sampler and LEBM trained on SVHN, CelebA, CIFAR-10 and CelebA-HQ datasets. In each sub-figure, the first four rows are generated by the DAMC sampler. The last				Ours-LEBM Ours-DAMC	0.002	<u>21.17</u> 18.76	0.005	35.67 30.83	<u>0.015</u>	60.89 57.72	0.023	<u>89.54</u> 85.88

four rows are generated by LEBM trained with the DAMC sampler.

- Prior model learned by our method demonstrates better generation quality.
- Posterior samples from the proposed method produces sharper reconstruction results.

Thank you