
Neural (Tangent Kernel) Collapse
Mariia Seleznova , Dana Weitzner , Raja Giryes , Gitta Kutyniok , Hung-Hsu Chou  1 2 2 1 1

NeurIPS 2023

Ludwig-Maximilians-Universität München, Tel Aviv University1 2



Setting: Deep Neural Network Classifiers

x ∈ 𝒳

Input

Feature map Linear classifier

W ∈ ℝC×n, b ∈ ℝC
f(x) = Wh(x) + b ∈ ℝC

OutputLast-layer features

h(x) ∈ ℝn
h : 𝒳 → ℝn



Setting: Deep Neural Network Classifiers

•  Classification with MSE loss: , where .ℒ(X, Y) = ∥WH + b1⊤
N − Y∥2

2 H = [h(x1), …, h(xN)] ∈ ℝn×N

x ∈ 𝒳

Input

Feature map Linear classifier

W ∈ ℝC×n, b ∈ ℝC
f(x) = Wh(x) + b ∈ ℝC

OutputLast-layer features

h(x) ∈ ℝn
h : 𝒳 → ℝn



Setting: Deep Neural Network Classifiers

•  Classification with MSE loss: , where .ℒ(X, Y) = ∥WH + b1⊤
N − Y∥2

2 H = [h(x1), …, h(xN)] ∈ ℝn×N

x ∈ 𝒳

Input

Feature map Linear classifier

W ∈ ℝC×n, b ∈ ℝC
f(x) = Wh(x) + b ∈ ℝC

OutputLast-layer features

h(x) ∈ ℝn
h : 𝒳 → ℝn

•  Assumption 1: The number of features is larger than the number of classes: .n > C



Setting: Deep Neural Network Classifiers

•  Classification with MSE loss: , where .ℒ(X, Y) = ∥WH + b1⊤
N − Y∥2

2 H = [h(x1), …, h(xN)] ∈ ℝn×N

x ∈ 𝒳

Input

Feature map Linear classifier

W ∈ ℝC×n, b ∈ ℝC
f(x) = Wh(x) + b ∈ ℝC

OutputLast-layer features

h(x) ∈ ℝn
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•  Assumption 1: The number of features is larger than the number of classes: .n > C

•  Assumption 2: The dataset is balanced, i.e., there are  samples from each class in the dataset.m := N/C
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Definition: NC is a common empirical phenomenon, which occurs in the end of training of modern classification DNNs:

• (NC3) Convergence to self-duality: the class means  and the final 
weights  converge to each other:

M
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Can we explain NC theoretically?
Analyzing trained DNNs is challenging: complex non-linear training dynamics  theory relies on simplifications.⇝

[4] Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.

[2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.
[1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

[3] Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.

[5] Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.
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• Discuss necessary conditions for convergence to NC.
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     The NTK develops an (approximate) block structure during training of DNN classifiers!⇝

• Intuitively, the NTK captures correlations between input samples during training.
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Block-Structure of the NTK

Assumption (NTK block structure). The NTK  has a block structure with values , and 
the last-layer features kernel  has a block structure with values .

Θ : 𝒳 × 𝒳 → ℝC×C (γd, γc, γn)
Θh : 𝒳 × 𝒳 → ℝn×n (κd, κc, κn)

Figure: The NTK block structure of ResNet20 trained on MNIST.
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·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK



·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK

Class-means 

of the residuals 



·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK

Class-means 

of the residuals 

Global mean 

of the residuals 



  E :=
1
m

W⊤W −
1

μclass
H1H⊤

1 −
1

μsingle
H2H⊤

2 +
α

μclass
⟨h⟩⟨h⟩⊤,

Theorem. The following quantity is invariant in time:

where  for a certain orthogonal matrix , and  are some positive constants.[H1, H2] := HQ/ m Q α, μclass, μsingle

·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK

Class-means 

of the residuals 

Global mean 

of the residuals 



  E :=
1
m

W⊤W −
1

μclass
H1H⊤

1 −
1

μsingle
H2H⊤

2 +
α

μclass
⟨h⟩⟨h⟩⊤,

Theorem. The following quantity is invariant in time:

where  for a certain orthogonal matrix , and  are some positive constants.[H1, H2] := HQ/ m Q α, μclass, μsingle

·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK

Class-means 

of the residuals 

Global mean 

of the residuals 

Class-means



  E :=
1
m

W⊤W −
1

μclass
H1H⊤

1 −
1

μsingle
H2H⊤

2 +
α

μclass
⟨h⟩⟨h⟩⊤,

Theorem. The following quantity is invariant in time:

where  for a certain orthogonal matrix , and  are some positive constants.[H1, H2] := HQ/ m Q α, μclass, μsingle

·H = −W⊤[(κd − κc)R+(κc − κn)mRclass+κnNRglobal]
·W = −RH⊤

·b = −Rglobal1N,

Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

R = f(X) − Y, Rclass = [⟨r⟩1, …, ⟨r⟩C]

:=R1

⊗ 1⊤
m, Rglobal = ⟨r⟩ ⊗ 1⊤

N .

where we defined the following residual components:

{
·H1 = − W⊤R1(μclass𝕀C + κnm1C1⊤

C)
·H2 = − μsingleW⊤WH2,

Gradient Flow with Block-Structured NTK

Class-means 

of the residuals 

Global mean 

of the residuals 

Class-means «Variability» within classes 



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆

• Zero invariant assumption  has similar effects to joint regularization of  and .E = 𝕆 W H



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆

• Zero invariant assumption  has similar effects to joint regularization of  and .E = 𝕆 W H

• Centralized features  are (approximately) achieved by batch-normalization.⟨h⟩ ≈ 0̄



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆

• Zero invariant assumption  has similar effects to joint regularization of  and .E = 𝕆 W H

• Centralized features  are (approximately) achieved by batch-normalization.⟨h⟩ ≈ 0̄

 Regularization and batch-normalization are important for NC!⇝



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆

• Zero invariant assumption  has similar effects to joint regularization of  and .E = 𝕆 W H

• If the additional assumptions do not hold, there are non-trivial fixed points not satisfying NC within our model. 

• Centralized features  are (approximately) achieved by batch-normalization.⟨h⟩ ≈ 0̄

 Regularization and batch-normalization are important for NC!⇝



Neural Collapse with Block-Structured NTK

Theorem. Assume that the NTK block structure assumption holds. Assume further that the last-layer features 

are centralized, i.e, , and the gradient flow dynamics invariant is zero, i.e., . Then the DNN's dynamic 
exhibits neural collapse as defined in (NC1)-(NC3). 

⟨h⟩ = 0̄ E = 𝕆

• Zero invariant assumption  has similar effects to joint regularization of  and .E = 𝕆 W H

• Condition  is necessary for NC (zero invariant with  is a special case). E ∝ W⊤W − c⟨h⟩⟨h⟩⊤ ⟨h⟩ = 0̄

• If the additional assumptions do not hold, there are non-trivial fixed points not satisfying NC within our model. 

• Centralized features  are (approximately) achieved by batch-normalization.⟨h⟩ ≈ 0̄

 Regularization and batch-normalization are important for NC!⇝



Experiments

L
eC

un
in

it
.,

no
N

C

L
eC

un
in

it
.,

N
C

U
ni

f.
in

it
.,

no
N

C

U
ni

f.
in

it
.,

N
C

H
e.

in
it
.,

no
N

C

H
e.

in
it
.,

N
C

0

200

400

600

i) Features norms

L
eC

un
in

it
.,

no
N

C

L
eC

un
in

it
.,

N
C

U
ni

f.
in

it
.,

no
N

C

U
ni

f.
in

it
.,

N
C

H
e.

in
it
.,

no
N

C

H
e.

in
it
.,

N
C

0.0

0.2

0.4

0.6

0.8

1.0
j) Kernels alignment

kH1HT
1 kF

kH2HT
2 kF

khhihhiTkF

h£/k£kF , Y Y T/kY Y TkFi
h£h/k£hkF , Y Y T/kY Y TkFi

10°1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, h£h, Y Y T i: 0.45

LeCun normal init., LR=0.049
Acc.: 99.69%, h£h, Y Y T i: 0.93

Uniform init., LR=0.003
Acc.: 99.60%, h£h, Y Y T i: 0.51

Uniform init., LR=0.049
Acc.: 99.69%, h£h, Y Y T i: 0.88

He normal init., LR=0.005
Acc.: 99.51%, h£h, Y Y T i: 0.38

He normal init., LR=0.049
Acc.: 99.64%, h£h, Y Y T i: 0.92

0 100 200 300 400
epoch

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.2

0.4

0.6

0.8

1.0

d) NC2

0 100 200 300 400
epoch

0.25

0.50

0.75

1.00

1.25

e) NC3

0.98

0.99

T
es
t
ac
cu
ra
cy

N
C
1

0.98

0.99

N
C
2

10−3 10−1

Learning rate

0.98

0.99

N
C
3

0.00

0.25

0.50

0.75f) LeCun normal init.

0.00

0.25

0.50

0.75g) Uniform init.

0.00

0.25

0.50

0.75h) He normal init.

0.98

0.99

1.00

0.98

0.99

1.00

10°3 10°1

Learning rate

0.98

0.99

1.00

0.0

0.5

1.0

1.5
f) LeCun normal init.

0.0

0.5

1.0

1.5
g) Uniform init.

0.0

0.5

1.0

1.5
h) He normal init.

10°1

100

101

a) Invariant norm

0.0

0.2

0.4

0.6

0.8

1.0
b) Inv. alignment to WTW LeCun normal init., LR=0.003

Acc.: 99.49%, h£h, Y Y T i: 0.45

LeCun normal init., LR=0.049
Acc.: 99.69%, h£h, Y Y T i: 0.93

Uniform init., LR=0.003
Acc.: 99.60%, h£h, Y Y T i: 0.51

Uniform init., LR=0.049
Acc.: 99.69%, h£h, Y Y T i: 0.88

He normal init., LR=0.005
Acc.: 99.51%, h£h, Y Y T i: 0.38

He normal init., LR=0.049
Acc.: 99.64%, h£h, Y Y T i: 0.92

0 100 200 300 400
epoch

0.00

0.05

0.10

0.15

0.20
c) NC1

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
d) NC2

0 100 200 300 400
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
e) NC3

Figure: ResNet20 trained on MNIST. Red lines: DNNs that exhibit NC, blue lines: DNNs 
that do not exhibit NC.

Architectures:  
• ResNet20, 

• VGG11/16, 

• DenseNet40.

Datasets:  
• MNIST,

• FashionMNIST,

• CIFAR10.

     9 models in total⇝



Thanks for your attention!


