# Neural (Tangent Kernel) Collapse

#### <u>Mariia Seleznova<sup>1</sup></u>, Dana Weitzner<sup>2</sup>, Raja Giryes<sup>2</sup>, Gitta Kutyniok<sup>1</sup>, Hung-Hsu Chou<sup>1</sup>

<sup>1</sup>Ludwig-Maximilians-Universität München, <sup>2</sup>Tel Aviv University

NeurIPS 2023





#### • Classification with MSE loss: $\mathscr{L}(\mathbf{X}, \mathbf{Y}) = \|\mathbf{W}\mathbf{H} + \mathbf{b}\mathbf{1}_N^\top - \mathbf{Y}\|_2^2$ , where $\mathbf{H} = [h(x_1), \dots, h(x_N)] \in \mathbb{R}^{n \times N}$ .



- Classification with MSE loss:  $\mathscr{L}(\mathbf{X}, \mathbf{Y}) = \|\mathbf{W}\mathbf{H} + \mathbf{b}\mathbf{1}_N^\top \mathbf{Y}\|_2^2$ , where  $\mathbf{H} = [h(x_1), \dots, h(x_N)] \in \mathbb{R}^{n \times N}$ .
- Assumption 1: The number of features is larger than the number of classes: n > C.



- Classification with MSE loss:  $\mathscr{L}(\mathbf{X}, \mathbf{Y}) = \|\mathbf{W}\mathbf{H} + \mathbf{b}\mathbf{1}_N^\top \mathbf{Y}\|_2^2$ , where  $\mathbf{H} = [h(x_1), \dots, h(x_N)] \in \mathbb{R}^{n \times N}$ .
- Assumption 1: The number of features is larger than the number of classes: n > C.
- Assumption 2: The dataset is balanced, i.e., there are m := N/C samples from each class in the dataset.

**Definition:** NC is a common empirical phenomenon, which occurs in the end of training of modern classification DNNs:

Papyan et al. Prevalence of neural collapse during the terminal phase of deep learning training. Proceedings of the National Academy of Sciences, 2020.





**Definition:** NC is a common empirical phenomenon, which occurs in the end of training of modern classification DNNs:

• (NC1) Variability collapse: features of each class collapse to their class means:

 $h(x_i^c) \to \langle h \rangle_c, \quad \forall c \in [C]$ 







**Definition:** NC is a common empirical phenomenon, which occurs in the end of training of modern classification DNNs:

• (NC1) Variability collapse: features of each class collapse to their class means:

 $h(x_i^c) \to \langle h \rangle_c, \quad \forall c \in [C]$ 

• (NC2) Convergence to Simplex Equiangular Tight Frame (ETF): centralized class means  $\mathbf{M} = [\langle h \rangle_1 - \langle h \rangle, \dots \langle h \rangle_C - \langle h \rangle]$  converge to the following configuration with maximal separation angle:

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} \propto \frac{C}{C-1} \Big( \mathbb{I}$$







**Definition:** NC is a common empirical phenomenon, which occurs in the end of training of modern classification DNNs:

• (NC1) Variability collapse: features of each class collapse to their class means:

 $h(x_i^c) \to \langle h \rangle_c, \quad \forall c \in [C]$ 

• (NC2) Convergence to Simplex Equiangular Tight Frame (ETF): centralized class means  $\mathbf{M} = [\langle h \rangle_1 - \langle h \rangle, \dots \langle h \rangle_C - \langle h \rangle]$  converge to the following configuration with *maximal separation angle*:

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} \propto \frac{C}{C-1} \Big( \mathbb{I}$$

• (NC3) Convergence to self-duality: the class means M and the final weights  $\mathbf{W}^{\top}$  converge to each other:

 $\mathbf{M} / \|\mathbf{M}\| \to \mathbf{W}^{\top} / \|\mathbf{W}^{\top}\|$ 







Analyzing trained DNNs is challenging: complex non-linear training dynamics  $\rightarrow$  theory relies on simplifications.

[1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

[2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.

Analyzing trained DNNs is challenging: complex non-linear training dynamics  $\rightarrow$  theory relies on simplifications.

#### **Previous works:**

• Unconstrained features model (UFM), where  $\mathbf{H}$  is a free variable [1,2,3]

[1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

[2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.

#### **Previous works:**

- Unconstrained features model (UFM), where  $\mathbf{H}$  is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]

[1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

[2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.

#### **Previous works:**

- Unconstrained features model (UFM), where  $\mathbf{H}$  is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

[1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

[2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.

#### **Previous works:**

- Unconstrained features model (UFM), where H is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

#### **Our contributions:**

• Novel approach to analyze DNNs' dynamics: *block-structure* assumption on the Neural Tangent Kernel (NTK).

- [1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.
- [2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.
- [3] Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.
- [4] Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.
- [5] Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.

#### **Previous works:**

- Unconstrained features model (UFM), where H is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

#### **Our contributions:**

 Novel approach to analyze DNNs' dynamics: block-structure assumption on the Neural Tangent Kernel (NTK). → Makes gradient flow dynamics of DNNs tractable!

- [1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.
- [2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.
- [3] Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.
- [4] Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.
- [5] Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.

#### **Previous works:**

- Unconstrained features model (UFM), where H is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

#### **Our contributions:**

 Novel approach to analyze DNNs' dynamics: block-structure assumption on the Neural Tangent Kernel (NTK). → Makes gradient flow dynamics of DNNs tractable!  $\rightarrow$  The NTK captures the dependence of the features on the input data (missing in UFMs).

- [1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.
- [2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.
- [3] Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.
- [4] Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.
- [5] Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.

#### **Previous works:**

- Unconstrained features model (UFM), where H is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

#### **Our contributions:**

- Novel approach to analyze DNNs' dynamics: block-structure assumption on the Neural Tangent Kernel (NTK). → Makes gradient flow dynamics of DNNs tractable!  $\rightarrow$  The NTK captures the dependence of the features on the input data (missing in UFMs).
- Show that NC occurs in fixed points of gradient flow dynamics under additional assumptions.
- [1] Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.
- [2] Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.
- [3] Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.
- [4] Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.
- [5] Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.

#### **Previous works:**

- Unconstrained features model (UFM), where H is a free variable [1,2,3]
- Imitating DNNs dynamics with stochastic differential equations [4]
- Homogeneous DNNs [5]

#### **Our contributions:**

- Novel approach to analyze DNNs' dynamics: block-structure assumption on the Neural Tangent Kernel (NTK).  $\rightarrow$  The NTK captures the dependence of the features on the input data (missing in UFMs).
- Show that NC occurs in fixed points of gradient flow dynamics under additional assumptions.
- Discuss necessary conditions for convergence to NC.

<sup>[1]</sup> Tirer & Bruna. Extended unconstrained features model for exploring deep neural collapse. ICML, 2022.

<sup>[2]</sup> Mixon et al. Neural collapse with unconstrained features. CoRR, 2020.

<sup>[3]</sup> Han et al. Neural collapse under MSE loss: Proximity to and dynamics on the central path. ICLR, 2022.

<sup>[4]</sup> Zhang et al. Imitating deep learning dynamics via locally elastic stochastic differential equations. NeurIPS, 2021.

<sup>[5]</sup> Poggio & Liao. Explicit regularization and implicit bias in deep network classifiers trained with the square loss. CoRR, 2021.

**Definition:** Neural tangent kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  of a DNN with output function  $f: \mathcal{X} \to \mathbb{R}^C$  and trainable parameters **w** is given by

$$\Theta_{k,s}(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} f_k(x_i), \nabla_{\mathbf{w}} f_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [C]$$

**Definition:** Last-layer features kernel  $\Theta^h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  of a DNN with last-layer features  $h : \mathcal{X} \to \mathbb{R}^n$ and trainable parameters w is given by

$$\Theta_{k,s}^h(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} h_k(x_i) \right\rangle$$

[1] Baratin et al. Implicit regularization via neural feature alignment. AISTATS, 2021. [2] Shan & Bordelon. A theory of neural tangent kernel alignment and its influence on training. CoRR, 2020.

 $\langle \nabla_{\mathbf{w}} h_s(x_j) \rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [n]$ 



**Definition:** Neural tangent kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  of a DNN with output function  $f: \mathcal{X} \to \mathbb{R}^C$  and trainable parameters **w** is given by

$$\Theta_{k,s}(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} f_k(x_i), \nabla_{\mathbf{w}} f_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [C]$$

**Definition:** Last-layer features kernel  $\Theta^h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  of a DNN with last-layer features  $h : \mathcal{X} \to \mathbb{R}^n$ and trainable parameters w is given by

$$\Theta_{k,s}^{h}(x_{i}, x_{j}) := \left\langle \nabla_{\mathbf{w}} h_{k}(x_{i}), \nabla_{\mathbf{w}} h_{s}(x_{j}) \right\rangle, \quad x_{i}, x_{j} \in \mathcal{X}, \quad k, s \in [n]$$

Intuitively, the NTK captures correlations between input samples during training.

[1] Baratin et al. Implicit regularization via neural feature alignment. AISTATS, 2021. [2] Shan & Bordelon. A theory of neural tangent kernel alignment and its influence on training. CoRR, 2020.



**Definition:** Neural tangent kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  of a DNN with output function  $f: \mathcal{X} \to \mathbb{R}^C$  and trainable parameters **w** is given by

$$\Theta_{k,s}(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} f_k(x_i), \nabla_{\mathbf{w}} f_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [C]$$

**Definition:** Last-layer features kernel  $\Theta^h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  of a DNN with last-layer features  $h : \mathcal{X} \to \mathbb{R}^n$ and trainable parameters w is given by

$$\Theta_{k,s}^h(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} h_k(x_i), \nabla_{\mathbf{w}} h_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [n]$$

- Intuitively, the NTK captures correlations between input samples during training.

• NTK alignment: during training, «correlations»  $\Theta(x_i, x_j)$  become larger for samples  $(x_i, x_j)$  from the same class [1,2]



<sup>[1]</sup> Baratin et al. Implicit regularization via neural feature alignment. AISTATS, 2021. [2] Shan & Bordelon. A theory of neural tangent kernel alignment and its influence on training. CoRR, 2020.

**Definition:** Neural tangent kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  of a DNN with output function  $f: \mathcal{X} \to \mathbb{R}^C$  and trainable parameters **w** is given by

$$\Theta_{k,s}(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} f_k(x_i), \nabla_{\mathbf{w}} f_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [C]$$

**Definition:** Last-layer features kernel  $\Theta^h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  of a DNN with last-layer features  $h : \mathcal{X} \to \mathbb{R}^n$ and trainable parameters w is given by

$$\Theta_{k,s}^h(x_i, x_j) := \left\langle \nabla_{\mathbf{w}} h_k(x_i), \nabla_{\mathbf{w}} h_s(x_j) \right\rangle, \quad x_i, x_j \in \mathcal{X}, \quad k, s \in [n]$$

- Intuitively, the NTK captures correlations between input samples during training.

• NTK alignment: during training, «correlations»  $\Theta(x_i, x_j)$  become larger for samples  $(x_i, x_j)$  from the same class [1,2]



<sup>[1]</sup> Baratin et al. Implicit regularization via neural feature alignment. AISTATS, 2021. [2] Shan & Bordelon. A theory of neural tangent kernel alignment and its influence on training. CoRR, 2020.

#### **Block-Structure of the NTK**

**Definition.** We say a kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{K \times K}$  has a block structure with values  $(\lambda_1, \lambda_2, \lambda_3)$  s.t.  $\lambda_1 > \lambda_2 > \lambda_3 > 0$  if  $\Theta_{k,k}(x,x) = \lambda_1, \quad \Theta_{k,k}(x_i^c, x_j^c) = \lambda_2,$ and  $\Theta_{k,s}(x, \tilde{x}) = 0$  for  $k \neq s$ .

**Assumption (NTK block structure).** The NTK  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  has a block structure with values  $(\gamma_d, \gamma_c, \gamma_n)$ , and the last-layer features kernel  $\Theta^h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  has a block structure with values  $(\kappa_d, \kappa_c, \kappa_n)$ .





**Figure:** The NTK block structure of ResNet20 trained on MNIST.

, 
$$\Theta_{k,k}(x_i^c, x_j^{c'}) = \lambda_3, \quad k = [1,K],$$



#### **Block-Structure of the NTK**

**Definition.** We say a kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{K \times K}$  has a block structure with values  $(\lambda_1, \lambda_2, \lambda_3)$  s.t.  $\lambda_1 > \lambda_2 > \lambda_3 > 0$  if 
$$\begin{split} \Theta_{k,k}(x,x) &= \lambda_1, \quad \Theta_{k,k}(x_i^c,x_j^c) = \lambda_2, \quad \Theta_{k,k}(x_i^c,x_j^c) &= \lambda_2, \quad \Theta_{k,k}(x_i^c,x_j^c) = \lambda_2, \quad \Theta_{k,k}(x_i^c,x_j^c) &= \lambda_2, \quad \Theta_{k,k}(x_i^c,x_j^c) = \lambda_2, \quad \Theta_{k,k}$$

**Assumption (NTK block structure).** The NTK  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  has a block structure with values  $(\gamma_d, \gamma_c, \gamma_n)$ , and the last-layer features kernel  $\Theta^h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  has a block structure with values  $(\kappa_d, \kappa_c, \kappa_n)$ .





**Figure:** The NTK block structure of ResNet20 trained on MNIST.

, 
$$\Theta_{k,k}(x_i^c, x_j^{c'}) = \lambda_3, \quad k = [1,K],$$



#### **Block-Structure of the NTK**

**Definition.** We say a kernel  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{K \times K}$  has a block structure with values  $(\lambda_1, \lambda_2, \lambda_3)$  s.t.  $\lambda_1 > \lambda_2 > \lambda_3 > 0$  if 
$$\begin{split} \Theta_{k,k}(x,x) &= \lambda_1, \quad \Theta_{k,k}(x_i^c,x_j^c) = \lambda_2, \quad \Theta_{k,k}(x_i^c,x_j^{c'}) = \lambda_3, \quad k = [1,K], \\ \text{and } \Theta_{k,s}(x,\tilde{x}) &= 0 \text{ for } k \neq s \,. \end{split}$$

**Assumption (NTK block structure).** The NTK  $\Theta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{C \times C}$  has a block structure with values  $(\gamma_d, \gamma_c, \gamma_n)$ , and the last-layer features kernel  $\Theta^h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{n \times n}$  has a block structure with values  $(\kappa_d, \kappa_c, \kappa_n)$ .





**Figure:** The NTK block structure of ResNet20 trained on MNIST.



Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = [\langle \mathbf{r} \rangle_1, \dots, \langle \mathbf{r} \rangle_C] \otimes \mathbf{1}_m^{\top}, \qquad \mathbf{R}_{global} = \langle \mathbf{r} \rangle \otimes \mathbf{1}_N^{\top}.$$

 $:=R_{1}$ 

 $\mathbf{R} + (\kappa_c - \kappa_n) m \mathbf{R}_{class} + \kappa_n N \mathbf{R}_{global}]$ 



Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = \left[ \langle \mathbf{r} \rangle_{1} \right]$$

 $\mathbf{R} + (\kappa_c - \kappa_n) m \mathbf{R}_{class} + \kappa_n N \mathbf{R}_{global}]$ 





Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = \left[ \langle \mathbf{r} \rangle_{1} \right]$$

 $\mathbf{R} + (\kappa_c - \kappa_n) m \mathbf{R}_{class} + \kappa_n N \mathbf{R}_{global}]$ 





Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)\mathbf{R} + (\kappa_c - \kappa_n)m\mathbf{R}_{class} + \kappa_n N\mathbf{R}_{global}] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$
Class-means

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = \left[ \langle \mathbf{r} \rangle_{1} \right]$$

**Theorem.** The following quantity is *invariant in time:* 

$$\mathbf{E} := \frac{1}{m} \mathbf{W}^{\mathsf{T}} \mathbf{W} - \frac{1}{\mu_{class}} \mathbf{H}_{1} \mathbf{H}_{1}^{\mathsf{T}} - \frac{1}{\mu_{single}} \mathbf{H}_{2} \mathbf{H}_{2}^{\mathsf{T}} + \frac{\alpha}{\mu_{class}} \langle h \rangle \langle h \rangle^{\mathsf{T}},$$

where  $[\mathbf{H}_1, \mathbf{H}_2] := \mathbf{H}\mathbf{Q}/\sqrt{m}$  for a certain orthogonal matrix  $\mathbf{Q}$ , and  $\alpha, \mu_{class}, \mu_{single}$  are some positive constants.





Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)\mathbf{R} + (\kappa_c - \kappa_n)m\mathbf{R}_{class} + \kappa_n N\mathbf{R}_{global}] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$
Class-means

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = \left[ \langle \mathbf{r} \rangle_{1} \right]$$

**Theorem.** The following quantity is *invariant in time:* 

$$\mathbf{E} := \frac{1}{m} \mathbf{W}^{\mathsf{T}} \mathbf{W} - \frac{1}{\mu_{class}} \mathbf{H}$$

where  $[\mathbf{H}_1, \mathbf{H}_2] := \mathbf{H}\mathbf{Q}/\sqrt{m}$  for a certain orthogonal matrix  $\mathbf{Q}$ , and  $\alpha, \mu_{class}, \mu_{single}$  are some positive constants.







Theorem. Suppose the NTK block structure assumption holds. Then the gradient flow dynamics of a DNN is given by

$$\begin{cases} \dot{\mathbf{H}} = -\mathbf{W}^{\top}[(\kappa_d - \kappa_c)\mathbf{R} + (\kappa_c - \kappa_n)m\mathbf{R}_{class} + \kappa_n N\mathbf{R}_{global}] \\ \dot{\mathbf{W}} = -\mathbf{R}\mathbf{H}^{\top} \\ \dot{\mathbf{b}} = -\mathbf{R}_{global}\mathbf{1}_N, \end{cases}$$
Class-means

where we defined the following residual components:

$$\mathbf{R} = f(\mathbf{X}) - \mathbf{Y}, \qquad \mathbf{R}_{class} = \left[ \langle \mathbf{r} \rangle_{1} \right]$$

**Theorem.** The following quantity is *invariant in time:* 

$$\mathbf{E} := \frac{1}{m} \mathbf{W}^{\mathsf{T}} \mathbf{W} - \frac{1}{\mu_{class}} \mathbf{H}$$

where  $[\mathbf{H}_1, \mathbf{H}_2] := \mathbf{H}\mathbf{Q}/\sqrt{m}$  for a certain orthogonal matrix  $\mathbf{Q}$ , and  $\alpha, \mu_{class}, \mu_{single}$  are some positive constants.







**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are *centralized*, i.e,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{O}$ . Then the DNN's dynamic exhibits neural collapse as defined in **(NC1)-(NC3)**.



**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are centralized, i.e.,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{0}$ . Then the DNN's dynamic exhibits neural collapse as defined in (NC1)-(NC3).

• Zero invariant assumption  $\mathbf{E} = \mathbb{O}$  has similar effects to joint *regularization* of W and H.



**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are centralized, i.e.,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{0}$ . Then the DNN's dynamic exhibits neural collapse as defined in (NC1)-(NC3).

- Zero invariant assumption  $\mathbf{E} = \mathbb{O}$  has similar effects to joint regularization of W and H.
- Centralized features  $\langle h \rangle \approx \overline{0}$  are (approximately) achieved by batch-normalization.



**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are centralized, i.e.,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{0}$ . Then the DNN's dynamic exhibits neural collapse as defined in (NC1)-(NC3).

- Zero invariant assumption  $\mathbf{E} = \mathbb{O}$  has similar effects to joint regularization of W and H.
- Centralized features  $\langle h \rangle \approx \overline{0}$  are (approximately) achieved by batch-normalization.



**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are centralized, i.e.,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{0}$ . Then the DNN's dynamic exhibits neural collapse as defined in (NC1)-(NC3).

- Zero invariant assumption  $\mathbf{E} = \mathbb{O}$  has similar effects to joint regularization of W and H.
- Centralized features  $\langle h \rangle \approx \overline{0}$  are (approximately) achieved by batch-normalization.

• If the additional assumptions do not hold, there are non-trivial *fixed points not satisfying NC* within our model.



**Theorem.** Assume that the NTK block structure assumption holds. Assume further that the last-layer features are centralized, i.e.,  $\langle h \rangle = \overline{0}$ , and the gradient flow dynamics invariant is zero, i.e.,  $\mathbf{E} = \mathbf{0}$ . Then the DNN's dynamic exhibits neural collapse as defined in (NC1)-(NC3).

- Zero invariant assumption  $\mathbf{E} = \mathbb{O}$  has similar effects to joint regularization of W and H.
- Centralized features  $\langle h \rangle \approx \overline{0}$  are (approximately) achieved by batch-normalization.

- If the additional assumptions do not hold, there are non-trivial *fixed points not satisfying NC* within our model.
- Condition  $\mathbf{E} \propto \mathbf{W}^{\top} \mathbf{W} c \langle h \rangle \langle h \rangle^{\top}$  is *necessary for NC* (zero invariant with  $\langle h \rangle = \overline{0}$  is a special case).



#### Experiments

#### **Architectures:**

- ResNet20,
- VGG11/16,
- DenseNet40.

#### **Datasets:**

- MNIST,
- FashionMNIST,
- CIFAR10.

→ 9 models in total











Thanks for your attention!