
Prioritizing Datapoints in RL
with Reducible Loss

Shivakanth Sujit, Somjit Nath, Pedro Braga, Samira Ebrahimi Kahou

Motivation

● Prioritized experience replay (PER) prioritizes datapoints with high TD error

● However there can be points w/ high TD error that are noisy or not learnable

● That is, points w/ high TD ≠ points that the model can actually learn from

● Instead the agent should focus on points with reducible loss

Solution

● Propose a simple change to the priority used for sampling

● Instead of TD error, use a measure how much the TD can be potentially

reduced as the priority.

● So you avoid repeatedly sampling points which the agent has been unable to

learn from

Solution

● In practice, we use the difference in the TD error between the online model

and the target network

Termed the Reducible Loss (ReLo)

Solution

● In practice, we use the difference in the TD error between the online model

and the target network

Where θ is the network considered and θt is the target network.

Solution

● In practice, we use the difference in the TD error between the online model

and the target network

● That is, we compute the TD error with respect to the online model (TDonline)

and the target network (TDtarget) and

Rationale

● ReLo ensures that points that were unimportant under PER, remain so.

● If the TD error was already low, then the ReLo will also be low

● However, the difference lies when considering points with high TD

Rationale

● If points that previously had high TD continue to do so even after several

updates, then those points might be noisy or not learnable

● In this case, ReLo will be low since TDonline and TDtarget will both be high

Rationale

● If the points were forgotten, then their current TD error could have increased,

but because TDtarget is lower, we know there is potential to reduce the loss

● Hence we should prioritize these points for learning.

Results

● We compared ReLo with PER in continuous and discrete control tasks.

● Our experiments show that ReLo improves performance over PER

● This is especially true in cases where adding PER actually hurts performance

Continuous Control

● Using Soft Actor Critic as a baseline,

we compared with PER and ReLo on

the DeepMind Control Suite

● ReLo generally leads to improved

performance over PER and baseline

SAC

Shaded region corresponds to 1 std dev across 5 seeds

Shaded region corresponds to 1 std dev across 5 seeds

Continuous Control

● Furthermore, we include aggregated metrics based on rliable[1]

● They model the performance across runs as a random variable and report

statistical measures with interval estimates

[1] Aggarwal et. al, Deep Reinforcement Learning at the Edge of the Statistical Precipice, NeurIPS 2021

Scores are normalized based on the max score in DMC, i.e. 1000

Continuous Control

● IQM (Interquartile Mean): Mean across the middle 50% of runs

● Optimality Gap: Measure of runs with normalized scores < 1, i.e how far off

are the runs from optional behaviour. (Lower is better)

[1] Aggarwal et. al, Deep Reinforcement Learning at the Edge of the Statistical Precipice, NeurIPS 2021

Scores are normalized based on the max score in DMC, i.e. 1000

Discrete Control

● Using DQN as a baseline, we

compared with PER and ReLo on

the MinAtar benchmark

[1] Young and Tian, MinAtar: An Atari-Inspired Testbed for Thorough and Reproducible Reinforcement Learning Experiments, arXiv:1903.03176

Shaded region corresponds to 1 std dev across 5 seeds

Discrete Control

● While naive prioritization hurts performance in MinAtar, ReLo matches or

exceeds performance of the baseline.

Scores are normalized based on max scores from MinAtar [1]

[1] Young and Tian, MinAtar: An Atari-Inspired Testbed for Thorough and Reproducible Reinforcement Learning Experiments, arXiv:1903.03176

Discrete Control

● IQM (Interquantile Mean): Mean across the middle 50% of runs

● Optimality Gap: Measure of runs with normalized scores < 1, i.e how far off

are the runs from optional behaviour. (Lower is better)

Scores are normalized based on max scores from MinAtar [1]

[1] Young and Tian, MinAtar: An Atari-Inspired Testbed for Thorough and Reproducible Reinforcement Learning Experiments, arXiv:1903.03176

Arcade Learning Environment

● We evaluated ReLo on a subset of

tasks from ALE in the compute

constrained setting of 2M frames.

● Rainbow + ReLo achieves better

performance than vanilla Rainbow in

nearly all the tested environments

Shaded region corresponds to 1 std dev across 5 seeds

● When aggregated across 21 environments, ReLo shows a clear improvement

over PER.

Comparison of TD Loss Minimization

● While PER has higher TD error during

training, consistently leads to lower

TD error across environments and

benchmarks.

● This empirically validates our claim

that ReLo prioritizes samples whose

loss can be reduced

Conclusion

● Vanilla PER is based on high loss, not if a sample is learnable.

● ReLo prioritizes samples that have the highest potential for loss reduction,

retaining positive behaviors of PER while addressing the above issue.

● Can be used with any off policy Q learning method with minimal code

additions and computational overhead above PER.

Conclusion

● Empirically validated across diverse tasks in continuous and discrete control.

● Future work could analyse the difference in points sampled between ReLo

and PER as well as dynamics of priority during training.

github.com/shivakanthsujit/reducible-loss

https://github.com/shivakanthsujit/reducible-loss

