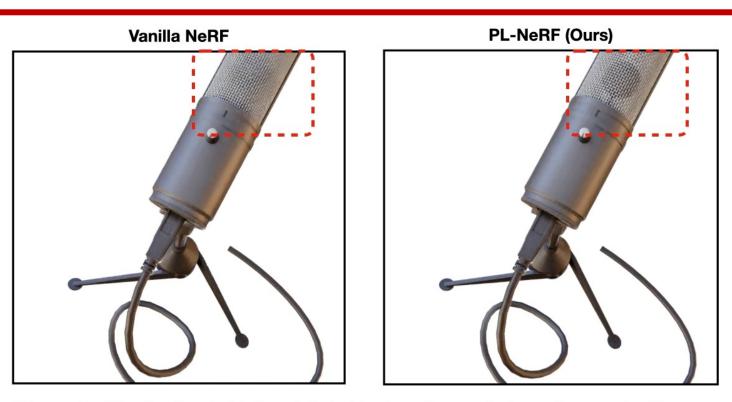
NeRF Revisited: Fixing Quadrature Instability in Volume Rendering

Mikaela Angelina Uy ¹, George Nakayama ¹, Guandao Yang ^{1,2}, Rahul Thomas ¹, Leonidas Guibas ¹, Ke Li ^{3, 4}



Observe that the structure inside the mic is lost in piecewise constant opacity approximation.

Vanilla NeRF (Constant)

Stanford

SFl

SIMON FRASER

UNIVERSITY

University²

Simon Fraser

University ³

Cornell

University²

Google⁴

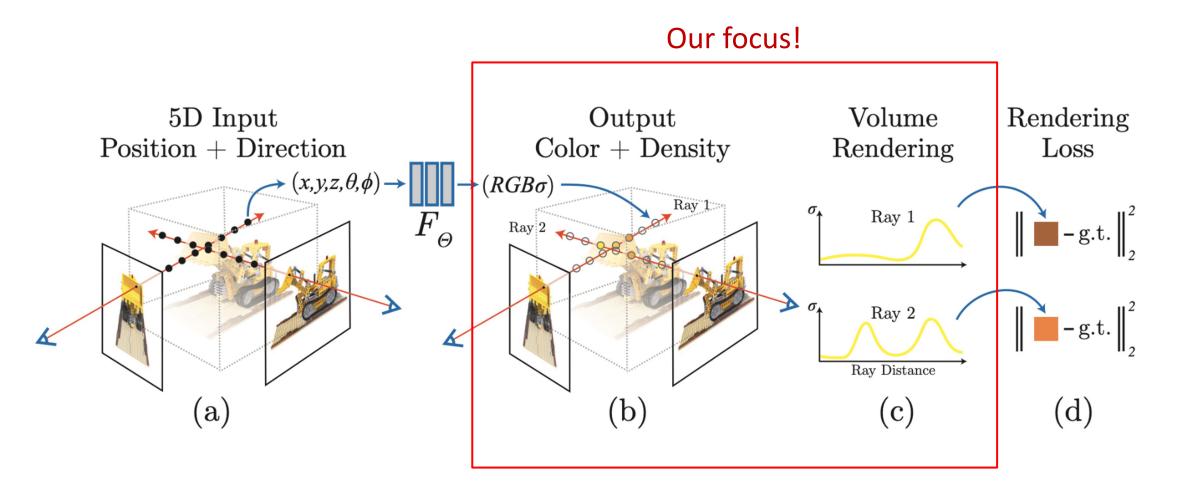
Leonidas Guibas Laboratory

NeRF: Neural Radiance Fields

• Novel view synthesis given only input images with known poses

- Input: 5D continuous coordinate
- Output: volume density (1D), color (rgb)

NeRF: Neural Radiance Fields



• We dive into the actual volume rendering equation.

What We Are Were Used to

• The formula that we are all used takes the following form:

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \overline{T_i(1 - \exp(-\sigma_i \delta_i))} \mathbf{c}_i$$
, where $T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$,

• This comes from the continuous integral:

$$\hat{y} = \mathbb{E}_{s \sim p(s)}[c(s)] = \int_0^\infty \underline{p(s)}c(s) \,\mathrm{d}s$$

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right).$$

Where did it come from?

• Continuous integral:

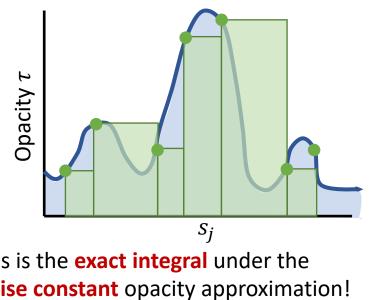
$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right).$$

• In practice, it is approximated with **quadrature**, resulting in the expression we are used to.

 $s_1, s_2, ..., s_N$ be N (ordered) samples

$$\forall s \in [s_j, s_{j+1}], \tau(s) = \tau(s_j),$$

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^N T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right), \quad \text{This piecewing products of the set of the s$$



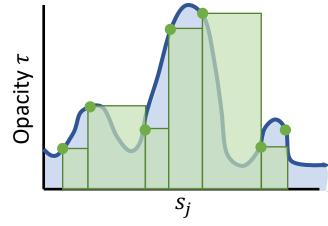
 S_i

Opacity au

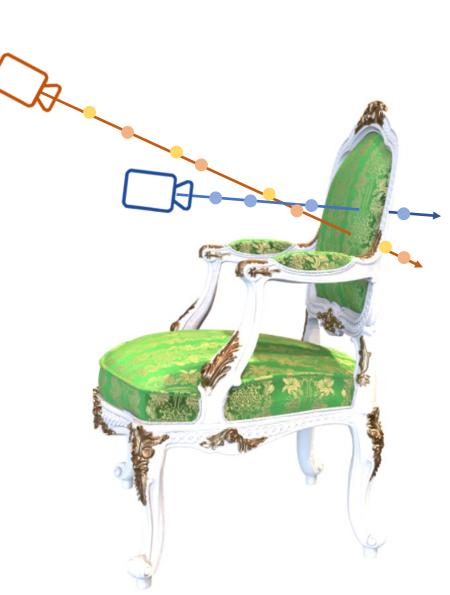
NeRFs with Piecewise Constant Opacity

- Different from the classical works, the difference with the emergence of NeRFs is optimization.
 - Opacity and color are learned and trained using the volume rendering equation.
 - Instead of just being evaluated as in classical works.
- Note: for each set of samples along the ray, the opacity at the **left bin** is assigned for each interval.

$$\forall s \in [s_j, s_{j+1}], \tau(s) = \tau(s_j),$$



Quadrature Instability

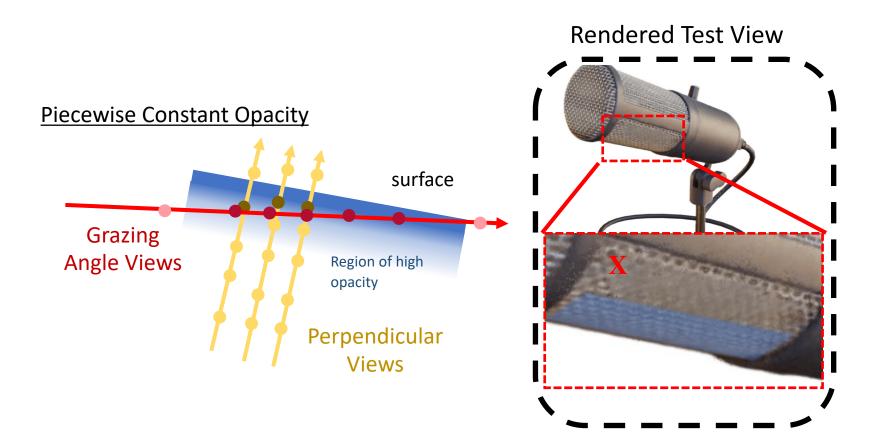


$$\forall s \in [s_j, s_{j+1}], \tau(s) = \tau(s_j),$$

Problems with Quadrature Instability

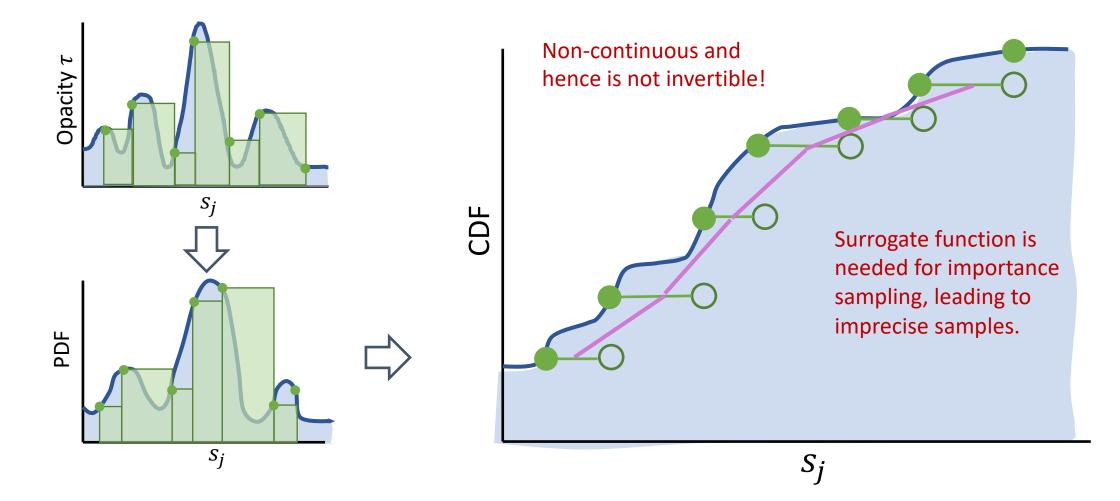
• Ray Conflicts

$$\forall s \in [s_j, s_{j+1}], \tau(s) = \tau(s_j),$$

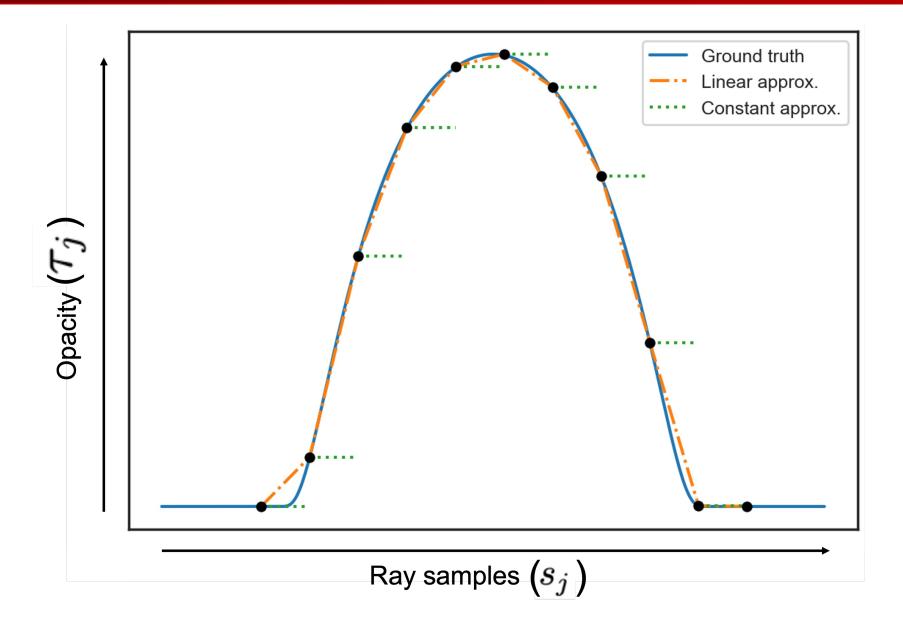


Problems with Quadrature Instability

• Non-invertibility of the CDF



Let's do better!



General Form for P_i

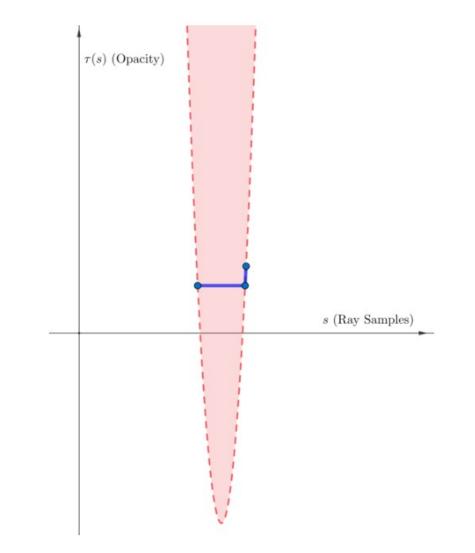
• We first showed that the probability of an interval can be exactly evaluated iff transmittance (T) is in closed-form:

$$P_j = \int_{s_j}^{s_{j+1}} \tau(s) T(s) \, \mathrm{d}s = -\int_{s_j}^{s_{j+1}} T'(s) \, \mathrm{d}s = T(s_j) - T(s_{j+1}).$$

• We know that this holds for any piecewise polynomial approximation for opacity.

Quadratic and Higher Order Polynomials

- Degree = 0 results in the original piecewise constant assumption with quadrature instability.
- We further show that for degree ≥ 2, it would lead to poor numerical conditioning.
 - Interpolating a higher degree polynomial can give negative opacity values when samples are close.

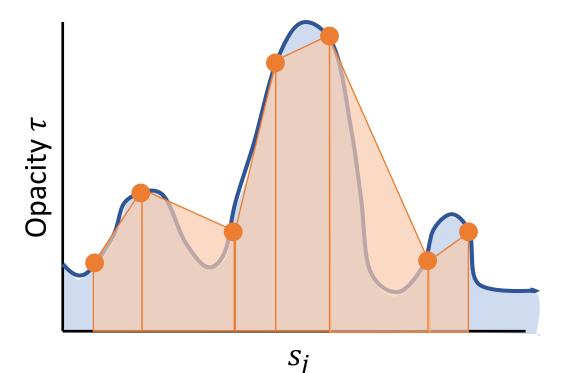


Our Piecewise Linear Derivation for Opacity

• We use a quadrature under a **piecewise linear** assumption for opacity.

• For
$$s \in [s_j, s_{j+1}]$$
, where $\tau_j = \tau(s_j), \tau(s_{j+1}) = \tau(s_{j+1})$

$$\tau(s) = \left(\frac{s_{j+1} - s}{s_{j+1} - s_j}\right)\tau_j + \left(\frac{s - s_j}{s_{j+1} - s_j}\right)\tau_{j+1}.$$



Our Piecewise Linear Derivation for Opacity

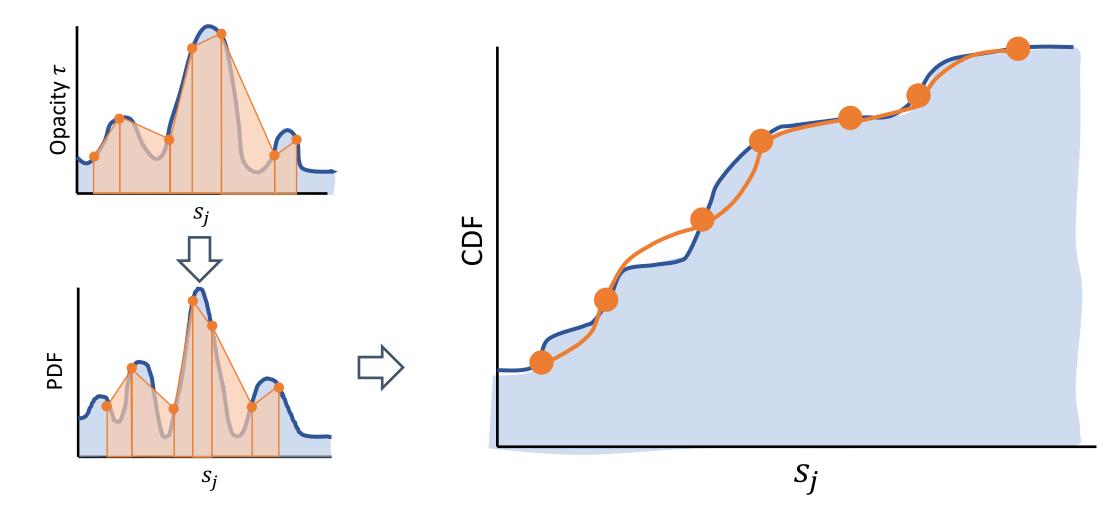
• Under this assumption, we get the following simple and closed-form expressions:

$$P_{j} = T(s_{j}) \cdot \left(1 - \exp\left[-\frac{(\tau_{j+1} + \tau_{j})(s_{j+1} - s_{j})}{2}\right]\right).$$

$$T(s_j) = \prod_{k=1}^{i} \exp\left[-\frac{(\tau_k + \tau_{k-1})(s_k - s_{k-1})}{2}\right].$$

Our Precise Importance Sampling

• The CDF is increasing and continuous, thus it is invertible!



Invertibility

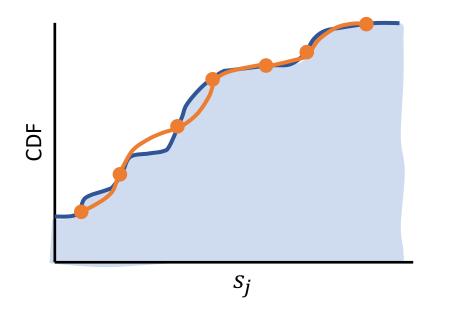
• The CDF is increasing and continuous, thus it is invertible!

$$F(t) = \int_0^t p(s) \, \mathrm{d}s = \sum_{s_j < t} P_j + \int_{s_j}^t p(s) \, \mathrm{d}s = \sum_{s_j < t} P_j + \int_{s_j}^t \tau(s) T(s) \, \mathrm{d}s$$

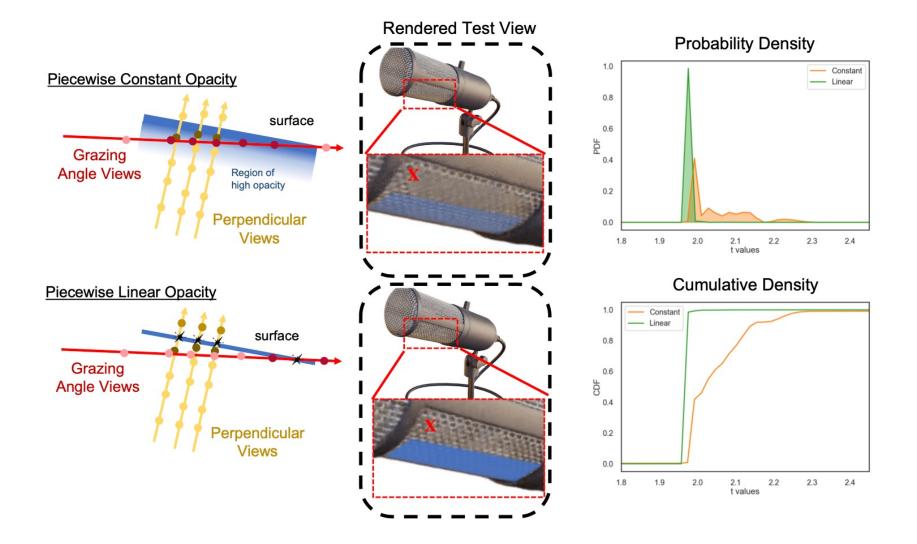
• We are also able to derive a closed-form solution for inverse transform sampling -- our **precise importance sampling**.

$$t = \frac{s_{k+1} - s_k}{\tau_{k+1} - \tau_k} \left[-\tau_k + \sqrt{\tau_k^2 + \frac{2(\tau_{k+1} - \tau_k) \left(-\ln \frac{1-u}{T(s_k)} \right)}{(s_{k+1} - s_k)}} \right].$$

Which also leads to more effective supervision on samples, e.g. depth.



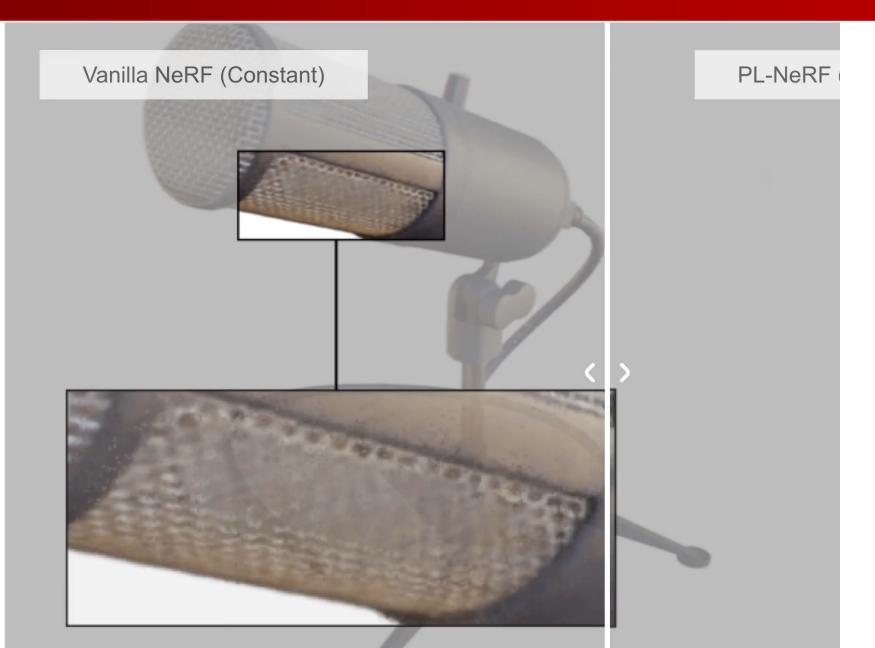
Our Precise Importance Sampling



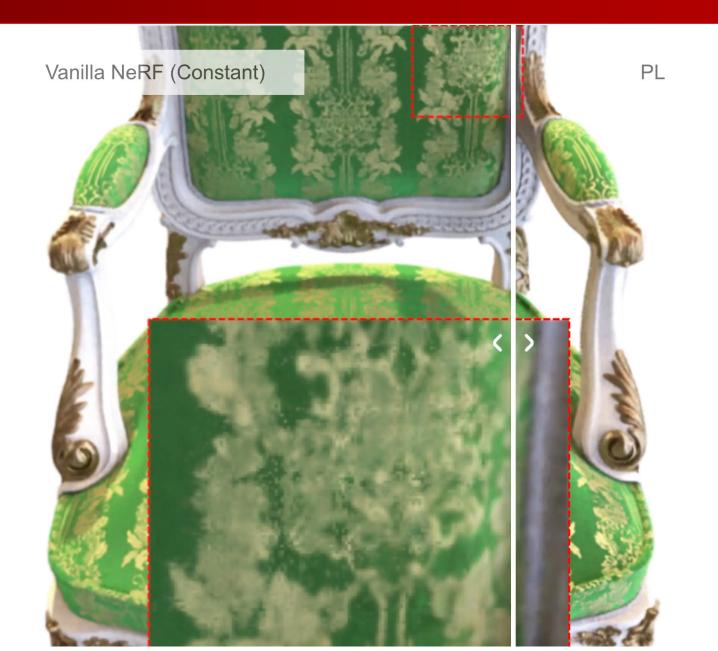
Results: Alleviating Ray Conflicts

Ray Conflicts

Results: Less Fuzzy Surfaces



Results: Crisper Textures



Results: Quantitative

	Blender	Avg.	Chair	Drums	Ficus	Hotdog	Lego	Mat.	Mic	Ship
PSNR ↑	Const. (Vanilla)	30.61	32.54	24.79	29.63	36.08	32.01	29.31	32.55	27.95
	Linear (Ours)	31.10	32.92	25.07	30.18	36.46	32.90	29.52	33.08	28.71
SSIM ↑	Const. (Vanilla)	0.943	0.966	0.918	0.960	0.975	0.959	0.943	0.978	0.846
	Linear (Ours)	0.948	0.969	0.923	0.965	0.977	0.966	0.948	0.981	0.857
LPIPS↓	Const. (Vanilla)	5.17	3.19	7.97	4.14	2.48	2.33	4.32	2.16	14.8
	Linear (Ours)	4.39	2.85	7.10	3.03	2.28	1.81	3.21	1.73	13.1
	RFF	Avg.	Fern	Flower	Fortress	Horns	Leaves	Orchid	Room	Trex
	RFF Const. (Vanilla)	Avg. 27.53	Fern 26.79	Flower 28.23	Fortress 32.53	Horns 28.54	Leaves 22.35	Orchid 21.20	Room 33.03	Trex 27.58
PSNR†										
	Const. (Vanilla)	27.53	26.79	28.23	32.53	28.54	22.35	21.20	33.03	27.58
PSNR↑ SSIM↑	Const. (Vanilla) Linear (Ours)	27.53 28.05	26.79 26.85	28.23 28.71	32.53 32.95	28.54 29.38	22.35 22.51	21.20 21.25	33.03 33.99	27.58 28.79
	Const. (Vanilla) Linear (Ours) Const. (Vanilla)	27.53 28.05 0.874	26.79 26.85 0.746	28.23 28.71 0.886	32.53 32.95 0.925	28.54 29.38 0.893	22.35 22.51 0.816	21.20 21.25 0.746	33.03 33.99 0.956	27.58 28.79 0.916

Table 1: Quantitative Results on Blender and Real Forward Facing Datasets. Reported LPIPS scores are multiplied by 10^2

Results: Qualitative

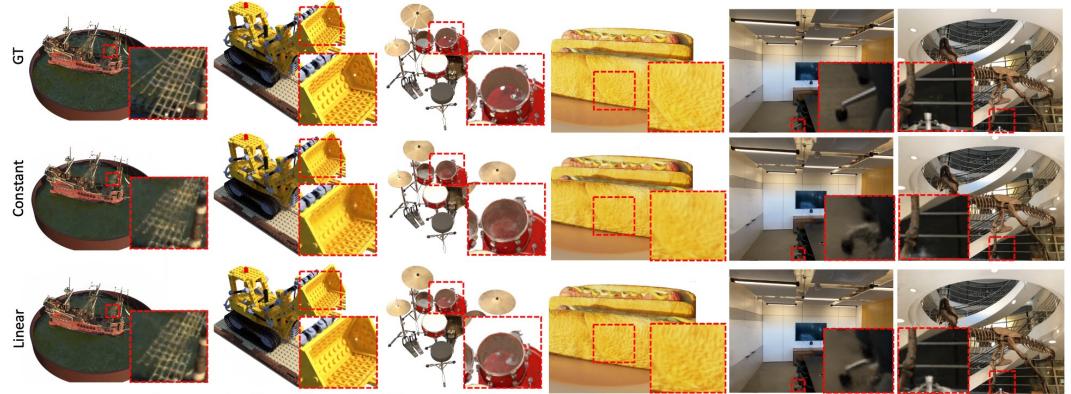
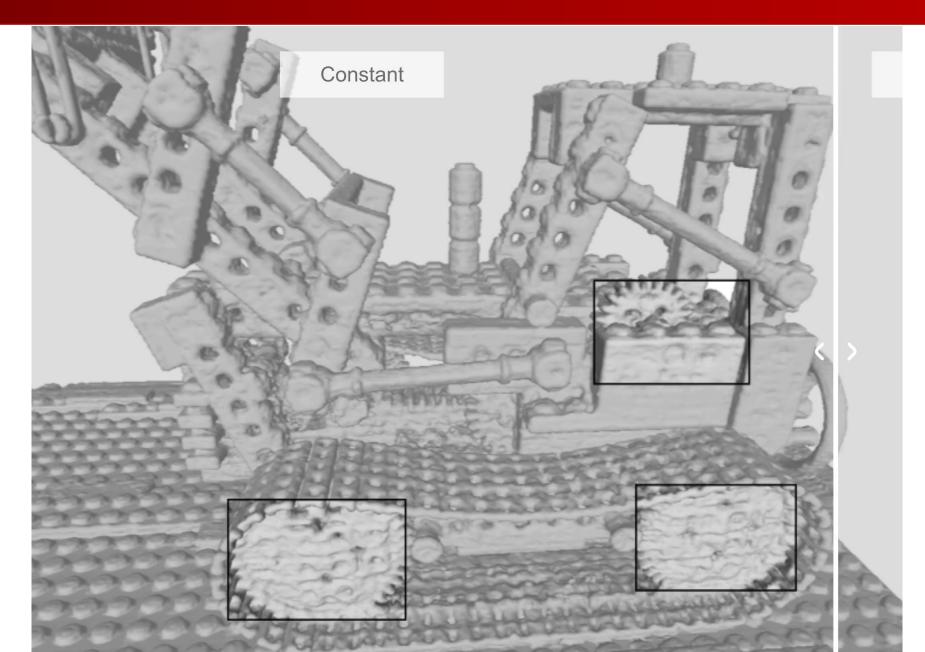


Figure 4: Qualitative Results for Blender and Real Forward Facing.

Results: Better Geometry Extraction



Results: Better Geometry Extraction

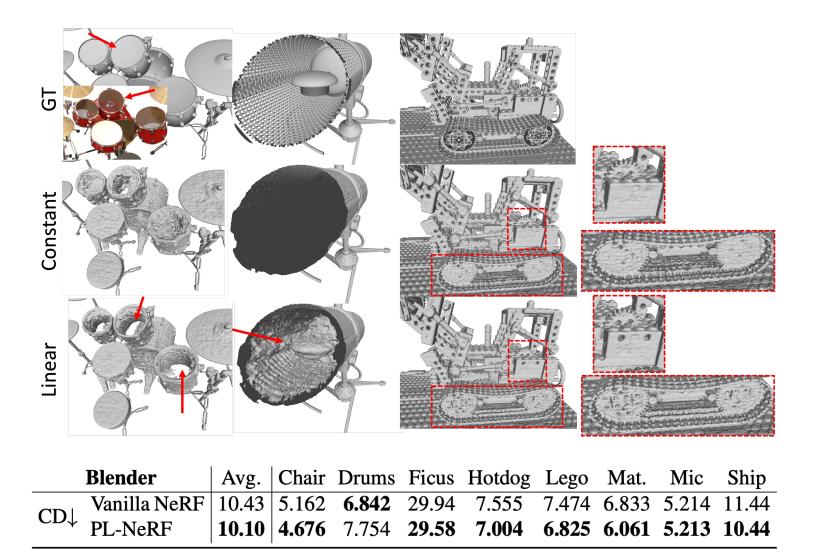
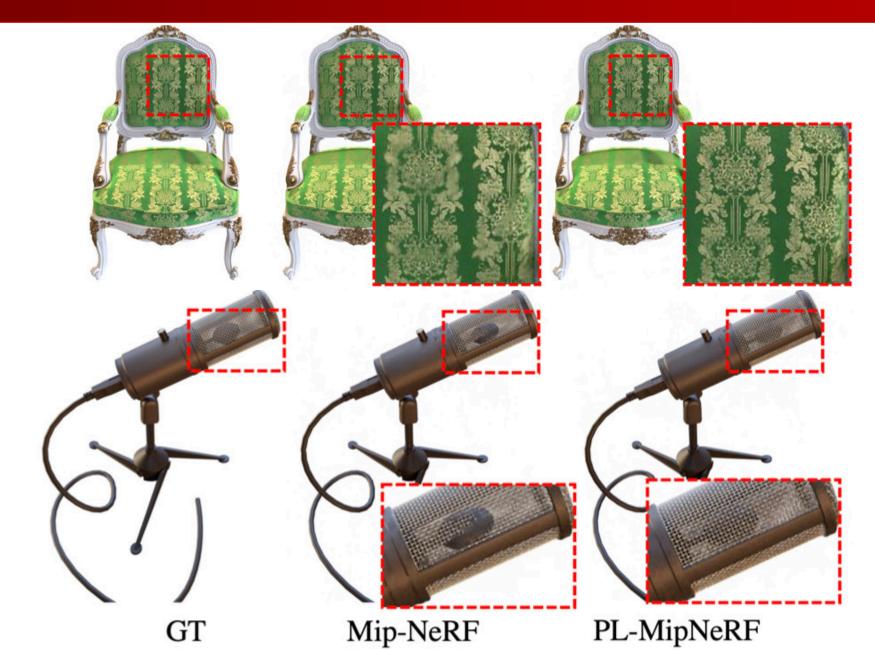


Table 3: Geometry Extraction Error Distance between the surface of the GT to the predicted meshes. Scores are $\times 10^3$

Drop-in Replacement in Existing Methods



Drop-in Replacement in Existing Methods

Blender		Avg.	Chair	Drums	Ficus	Hotdog	Lego	Mat.	Mic	Ship
PSNR ↑	Mip-NeRF	31.76	33.95	24.39	31.20	36.12	33.84	30.55	34.63	29.41
	PL-MipNeRF	32.48	35.11	24.92	32.25	36.51	35.15	30.69	35.22	30.00
SSIM ↑	Mip-NeRF	0.955	0.975	0.921	0.971	0.978	0.971	0.957	0.987	0.876
	PL-MipNeRF	0.959	0.981	0.928	0.977	0.980	0.976	0.959	0.989	0.882
LPIPS↓										
	PL-MipNeRF	3.09	1.32	5.78	1.66	1.67	1.07	2.09	0.788	10.3

Table 1: Quantitative Results of Mip-NeRF v.s. PL-MipNeRF Reported LPIPS scores are multiplied by 10²

						Hotdog				
PSNR ↑	DIVeR	30.78	32.01	24.72	30.1	35.94	29.03	29.31	32.10	29.08
	PL-DIVeR	30.88	32.92	24.7	30.23	35.94	33.42	32.06	33.08	28.99
SSIM ↑	DIVeR	0.956	0.959	0.917	0.963	0.974	0.965	0.977	0.978	0.870
	PL-DIVeR	0.947	0.969	0.916	0.963	0.966	0.966	0.977	0.981	0.871
LPIPS↓	DIVeR	3.39	2.79	6.13	2.34	1.92	1.46	1.77	2.16	7.77
	PL-DIVeR	3.28	2.85	6.01	2.12	1.83	1.49	1.77	1.73	7.82

Table 2: Quantitative Results of DIVeR v.s. PL-DIVeR Reported LPIPS scores are multiplied by 10²

Thank you!

Visit our Project Page!

