

Content-based Unrestricted Adversarial Attack

Zhaoyu Chen^{1,2}, Bo Li², Shuang Wu², Kaixun Jiang¹, Shouhong Ding², Wenqiang Zhang^{1,3} ¹Academy for Engineering and Technology, Fudan University ²Youtu Lab, Tencent ³School of Computer Science, Fudan University

zhaoyuchen20@fudan.edu.cn https://anonymous.4open.science/r/Adversarial_Content_Attack-3118/

Introduction

Background

- Existing adversarial defense methods can defend against l_p attacks, but cannot defend against more natural unrestricted attacks.
- Existing unrestricted attacks are achieved either through reliance on subjective intuition and objective metrics or by implementing minor modifications, thereby constraining their potential for transferability.

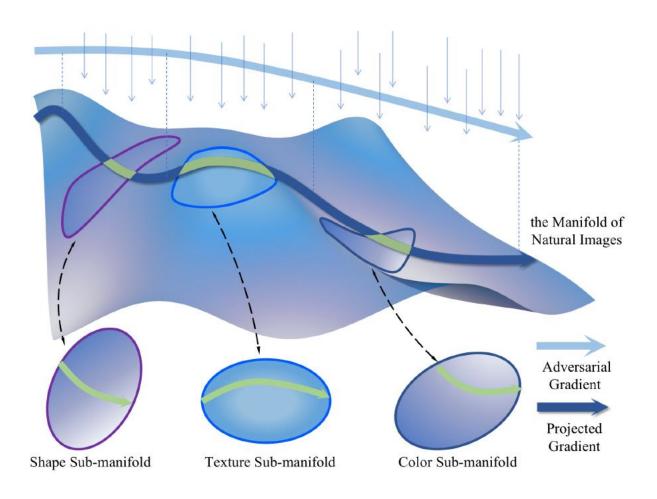
> Challenge

We argue that an ideal unrestricted attack should meet three criteria:

- 1. maintain the photorealism of the images.
- 2. attack content should be diverse, allowing for unrestricted modifications of image contents (shape, texture and color, etc.).
- 3. have a high adversarial transferability.

Introduction

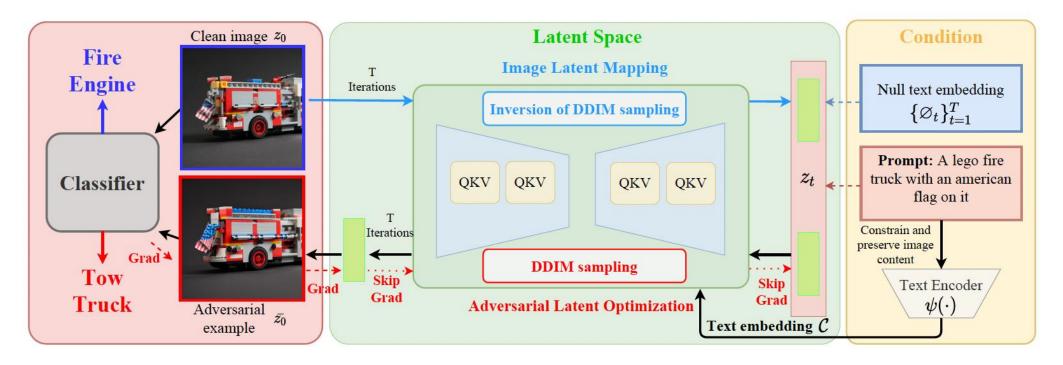
Contributions


- We propose a novel attack framework called Content-based Unrestricted Adversarial Attack, which utilizes high-capacity and well-aligned low-dimensional manifolds to generate adversarial examples that are more diverse and natural in content.
- We achieve an unrestricted content attack, known as the Adversarial Content Attack. By utilizing Image Latent Mapping and Adversarial Latent Optimization techniques, we optimize latents in a diffusion model, generating high transferable unrestricted adversarial examples.
- The effectiveness of our attack has been validated through experimentation and visualization. Notably, we have achieved a significant improvement of 13.3~50.4% over state-of-the-art attacks in terms of adversarial transferability.

Method

Content-based Unrestricted Adversarial Attack

- We assume that natural images can be mapped onto a low-dimensional manifold by a generative model.
- As this lowdimensional manifold is well-trained on natural images, it naturally ensures the photorealism of the images and possesses the rich content present in natural images.
- Once we map an image onto a low-dimensional manifold, moving it along the adversarial direction on the manifold yields an unrestricted adversarial example.


$$\max_{x_{adv}} \mathcal{L}(\mathcal{F}_{\theta}(x_{adv}), y), \quad s.t. \; x_{adv} \text{ is natural},$$

Method

Based on the aforementioned framework and the full utilization of the diffusion model's capability, we achieve the unrestricted content-based attack known as Adversarial Content Attack (ACA):

We first employ **Image Latent Mapping (ILM)** to map images onto the latent space represented by this lowdimensional manifold. Subsequently, we introduce an **Adversarial Latent Optimization (ALO)** technique that moves the latent representations of images along the adversarial direction on the manifold. Finally, based on iterative optimization, ACA can generate highly transferable unrestricted adversarial examples that appear quite natural.

Method

• Image Latent Mapping (ILM) :

 $\min_{\varnothing_t} ||z_{t-1}^* - z_{t-1}(\bar{z}_t, t, \mathcal{C}, \varnothing_t)||_2^2,$ $z_{t-1}(\bar{z}_t, t, \mathcal{C}, \varnothing_t) = \sqrt{\frac{\alpha_{t-1}}{\alpha_t}} \bar{z}_t + \sqrt{\alpha_{t-1}} \left(\sqrt{\frac{1}{\alpha_{t-1}} - 1} - \sqrt{\frac{1}{\alpha_t} - 1}\right) \cdot \tilde{\epsilon}_{\theta}(z_t, t, \mathcal{C}, \varnothing_t).$ (4)

• Adversarial Latent Optimization (ALO):

$$g_{k} \leftarrow \mu \cdot g_{k-1} + \frac{\nabla_{z_{T}} \mathcal{L} \left(\mathcal{F}_{\theta} \left(\left(\varrho(\bar{z_{0}}), y \right) \right)}{|| \nabla_{z_{T}} \mathcal{L} \left(\mathcal{F}_{\theta} \left(\varrho(\bar{z_{0}}), y \right) \right) ||_{1}}, \\ \delta_{k} \leftarrow \Pi_{\kappa} \left(\delta_{k-1} + \eta \cdot \operatorname{sign}(g_{k}) \right).$$

> Skip Gradient

$$abla_{z_T} \mathcal{L}\left(\mathcal{F}_{\theta}(\bar{z_0}), y\right) =
ho rac{\partial \mathcal{L}}{\partial \bar{z_0}}$$

Differentiable Boundary Processing

$$\varrho(x) = \begin{cases} \tanh(1000x)/10000, & x < 0, \\ x, & 0 \le x \le 1, \\ \tanh(1000(x-1))/10001, & x > 1. \end{cases}$$

Algorithm 1 Adversarial Content Attack

Input: a input image z_0 with the label y, a text embedding $\mathcal{C} = \psi(\mathcal{P})$, a classifier $\mathcal{F}_{\theta}(\cdot)$, DDIM steps T, image mapping iteration N_i , attack iterations N_a , and momentum factor μ 1: Calculate latents $\{z_0^*, ..., z_T^*\}$ using Equation 5 over z_0 with w = 12: Initialize $w = 7.5, \bar{z_T} \leftarrow \bar{z_T}^*, \emptyset \leftarrow \psi(""), \delta_0 \leftarrow 0, g_0 \leftarrow 0$ 3: // Image Latent Mapping 4: for t = T, T - 1, ..., 1 do for $j = 1, ..., N_i$ do 5: $arnothing_t \leftarrow arnothing_t - \zeta
abla_{arnothing_t} ||z_{t-1}^* - z_{t-1}(\bar{z}_t, t, \mathcal{C}, arnothing_t)||_2^2$ end for 6: 7: 8: $z_{t-1} \leftarrow z_{t-1}(\bar{z}_t, t, \mathcal{C}, \emptyset_t), \, \emptyset_{t-1} \leftarrow \emptyset_t$ 9: end for (12)10: // Adversarial Latent Optimization (13)11: for $k = 1, ..., N_a$ do $\begin{aligned} \vec{z_0} &\leftarrow \Omega\left(\vec{z_T} + \delta_{k-1}, T, \mathcal{C}, \{\varnothing_t\}_{t=1}^T\right) \\ g_k &\leftarrow \mu \cdot g_{k-1} + \frac{\nabla_{z_T} \mathcal{L}(\mathcal{F}_{\theta}(\varrho(\vec{z_0}), y))}{||\nabla_{z_T} \mathcal{L}(\mathcal{F}_{\theta}(\varrho(\vec{z_0}), y))||_1} \end{aligned}$ 12: 13: $\delta_k \leftarrow \Pi_\kappa \left(\delta_{k-1} + \eta \cdot \operatorname{sign}(q_k) \right)$ 14: 15: end for 16: $\bar{z_0} \leftarrow \varrho \left(\Omega \left(\bar{z_T} + \delta_{N_a}, T, \mathcal{C}, \{ \varnothing_t \}_{t=1}^T \right) \right)$ **Output:** The unrestricted adversarial example $\bar{z_0}$.

(11)

Experiments

Table 1: Performance comparison of adversarial transferability on normally trained CNNs and ViTs. We report attack success rates (%) of each method ("*" means white-box attack results).

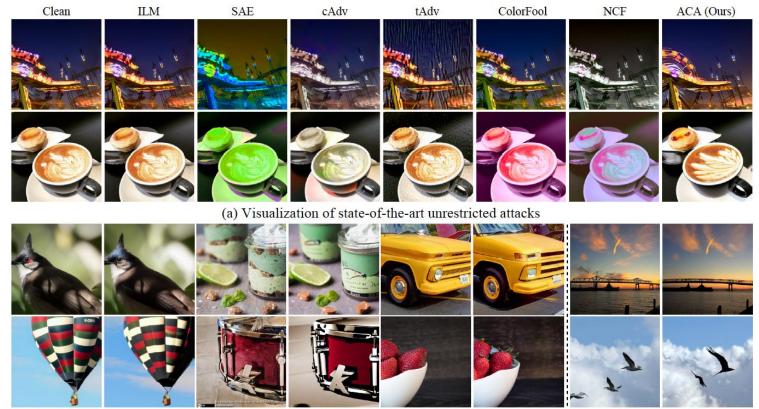
	Surrogate Attack Avg							Avg.					
	Model	Attack	MNL2	Inc. 1.2		CNNs	DN 152	EE b7	MohVET	Transfe ViT P		PVT-v2	ASR (%)
Dataset	-	Clean ILM	MN-v2 12.1 13.5	Inc-v3 4.8 5.5	7.0 8.0	Dense-161 6.3 6.3	RN-152 5.6 5.9	EF-b7 8.7 8.3	MobViT-s 7.8 8.3	ViT-B 8.9 9.0	Swin-B 3.5 4.8	3.6 4.0	6.83 7.36
ImageNet-compatible Dataset		SAE ADef ReColorAdv	60.2 14.5 37.4	21.2 6.6 14.7	54.6 9.0 26.7	42.7 8.0 22.4	44.9 7.1 21.0	30.2 9.8 20.8	82.5* 80.8* 96.1*	38.6 9.7 21.5	21.1 5.1 16.3	20.2 4.6 16.7	37.08 8.27 21.94
Metric Attack Success Rate (ASR)	MobViT-s	cAdv tAdv ACE ColorFool NCF	41.9 33.6 30.7 47.1 67.7	25.4 18.8 9.7 12.0 31.2	33.2 22.1 20.3 40.0 60.3	31.2 18.7 16.3 28.1 41.8	28.2 18.7 14.4 30.7 52.2	34.7 15.8 13.8 19.3 32.2	84.3* 97.4* 99.2* 81.7* 74.5*	32.6 15.3 16.5 24.3 39.1	22.7 11.2 6.8 9.7 20.8	22.0 13.7 5.8 10.0 23.1	30.21 18.66 14.92 24.58 40.93
Attack Success Rate (ASR)		ACA (Ours)	66.2	56.6	<mark>60.6</mark>	58.1	55.9	55.5	89.8*	51.4	52.7	55.1	56.90
 State-of-the-art methods SAE ADef ReColorAdv cAdv tAdv ColorFool NCE 	MN-v2 RN-50	SAE ADer ReColorAdv cAdv tAdv ACE ColorFool NCF ACA (Ours) SAE ADer ReColorAdv cAdv tAdv ACE ColorFool NCF	90.8* 56.6* 97.7* 96.6* 99.9* 93.3* 93.2* 93.1* 63.2 15.5 40.6 44.2 43.4 32.8 41.6 71.2	22.5 7.6 18.6 26.8 27.2 9.5 9.5 33.6 56.8 25.9 7.7 17.7 25.3 27.0 9.4 9.8 33.6	53.2 8.4 33.7 39.6 31.5 17.9 25.7 65.9 62.6 88.0* 55.7* 96.4* 97.2* 99.0 * 99.1* 90.1* 91.4*	$\begin{array}{c} 38.0\\ 7.7\\ 24.7\\ 33.9\\ 24.3\\ 12.4\\ 15.3\\ 43.5\\ \hline \\ 55.7\\ \hline \\ 41.9\\ 8.4\\ 28.3\\ 36.8\\ 28.8\\ 16.1\\ 18.6\\ 48.5\\ \hline \end{array}$	41.9 7.1 26.4 29.9 24.5 12.6 15.4 56.3 56.0 46.5 7.8 33.3 37.0 30.2 15.2 21.0 60.5	26.9 10.9 20.7 32.7 22.4 11.7 13.4 33.0 51.0 28.8 11.4 19.2 34.9 21.6 12.7 15.4 32.4	44.6 11.7 31.8 41.9 40.5 16.3 15.7 52.6 59.6 45.9 12.3 29.3 40.1 35.9 20.5 20.4 52.6	33.6 9.5 17.7 33.1 16.1 12.1 14.2 35.8 48.7 35.3 9.2 18.8 30.6 16.5 13.1 15.4 36.8	16.8 4.5 12.2 20.6 15.9 5.4 5.9 21.2 48.6 20.3 4.6 12.9 19.3 15.2 6.1 5.9 19.8	18.3 4.5 12.6 19.7 15.1 5.6 6.4 20.6 50.4 19.6 4.9 13.4 20.2 15.1 5.3 6.8 21.7	32.87 7.99 22.04 30.91 24.17 11.50 13.50 40.28 54.38 54.38 36.38 9.09 23.72 32.04 25.97 14.58 17.21 41.90
• NCF	3	ACA (Ours)	69.3	61.6	88.3*	61.9	61.7	60.3	62.6	52.9	51.9	53.2	59.49
	ViT-B	SAE ADer ReColorAdv cAdv tAdv ACE ColorFool NCF ACA (Ours)	54.5 15.3 25.5 31.4 39.5 30.9 45.3 55.9 64.6	26.9 8.3 12.1 27.0 22.8 11.4 13.9 25.3 58.8	49.7 9.9 17.5 26.1 25.8 22.0 35.7 50.6 60.2	38.4 8.4 13.9 22.5 23.2 15.5 24.3 34.8 58.1	41.4 7.6 14.4 19.9 22.3 15.2 28.8 42.3 58.1	30.4 12.0 15.4 26.1 20.8 13.0 19.8 29.9 57.1	46.1 12.4 22.9 32.9 34.1 17.0 27.0 40.6 60.8	78.4* 81.5* 97.7* 96.5* 93.5* 98.6* 83.1* 81.0* 87.7*	19.9 5.3 10.9 18.4 16.3 6.5 8.9 20.0 55.5	18.1 5.5 8.6 16.9 15.3 6.3 9.3 19.1 54.9	36.16 9.41 15.69 24.58 24.46 15.31 23.67 35.39 58.68

> Metric

> Dataset

> State-of-the-art

- SAE
- ADef
- ReColorAd •
- cAdv
- tAdv •
- ColorFool
- NCF



Attack	HGD	R&P	NIPS-r3	JPEG	Bit-Red	DiffPure	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	Res-De	Shape-Res	Avg. ASR (%)
Clean ILM	1.2 1.5	1.8 1.9	3.2 3.5	6.2 7.1	17.6 18.5	15.4 16.1	6.8 6.8	8.9 9.8	2.6 3.0	4.1 5.1	6.7 8.1	6.77 7.40
SAE	21.4	19.0	25.2	25.7	43.5	39.8	25.7	29.6	20.0	35.1	49.6	30.42
ADer	2.9	3.6	6.9	10.4	27.5	18.1	10.1	12.1	5.6	6.0	9.7	10.26
ReColorAdv	5.1	7.0	10.0	20.0	24.3	20.0	11.1	15.5	7.4	11.6	18.4	13.67
cAdv	12.2	14.0	17.7	11.1	33.9	32.9	19.9	23.2	14.6	16.2	25.3	20.09
tAdv	10.9	12.4	14.4	17.8	29.6	21.2	17.7	19.0	12.5	16.4	25.4	17.94
ACE	4.9	5.9	11.1	12.6	28.1	24.9	12.4	15.4	7.6	11.6	21.0	14.14
ColorFool	9.1	9.6	15.3	18.0	37.9	33.8	17.8	21.3	10.5	20.3	35.0	20.78
NCF	22.8	21.1	25.8	26.8	43.9	39.6	27.4	31.9	21.8	34.4	47.5	31.18
ACA (Ours)	52.2	53.6	53.9	59.7	63.4	63.7	59.8	62.2	53.6	55.6	60.8	58.05

Table 2: Performance comparison of adversarial transferability on adversarial defense methods.

Experiments

(b) Adversarial examples of Adversarial Content Attack (ACA)

(c) Case Study

Table 3: Image quality assessment.

Attack	NIMA -AVA†	HyperIQA		MUSIQ -KonIQ	
Clean ILM	5.15 5.15	0.667 0.672	4.07 4.08	52.66 52.55	82.01 81.80
SAE	5.05	0.597	3.79	47.24	71.88
ADer	4.89	0.608	3.89	47.39	72.10
ReColorAdv	5.07	0.668	3.97	51.08	80.32
cAdv	4.97	0.623	3.87	48.32	75.12
tAdv	4.83	0.525	3.78	44.71	67.07
ACE	5.12	0.648	3.96	50.49	77.25
ColorFool	5.24	0.662	4.05	52.27	78.54
NCF	4.96	0.634	3.87	50.33	74.10
ACA (Ours)	5.54	0.691	4.37	56.08	85.11

Experiments

Table 4: Attack speed of unrestricted attacks. We choose MN-v2 as the surrogate model and evaluate the inference time on an NVIDIA Tesla A100.

Attack	SAE	ADer	ReColorAdv	cAdv	tAdv	ACE	ColorFool	NCF	ACA (Ours)
Time (sec)	8.80	0.41	3.86	18.67	4.88	6.64	12.18	10.45	60.0+65.33=125.33

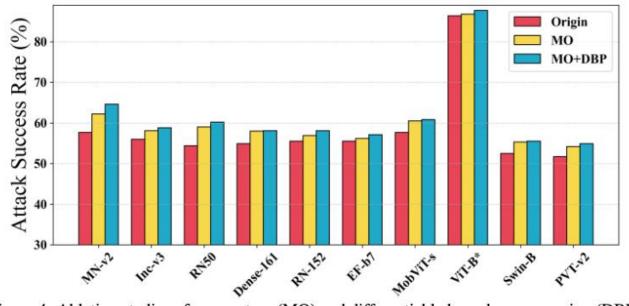


Figure 4: Ablation studies of momentum (MO) and differentiable boundary processing (DBP).

