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Multi-armed Bandits

• The agent interacts with the environment for T rounds.
• In each round t , the agent chooses an action at ∈ [K ]

• Standard reward rt is generated independently from inlier
distribution.

• After contamination, the agent observes contaminated reward
xt .
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Robustness:
Two Classes of Heavy-tailed Reward Distributions

Definition (Finite k -th raw moment)

A distribution over R is said to have a finite k -th raw moment if it is
within

Pk =
{

P : EX∼P

[
|X |k

]
≤ 1

}
, k ≥ 2,

where k is considered fixed but arbitrary.

Definition (Finite k -th central moment)

A distribution over R is said to have a finite k -th central moment if
it is within

Pc
k =

{
P : EX∼P

[
|X − µ|k

]
≤ 1

}
, k ≥ 2,

where µ := EX∼P [X ] ∈ [−D,D] and D ≥ 1.
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Robustness:
Huber Model

Definition (Heavy-tailed MABs with Huber contamination)

Given the corruption level α ∈ [0,1/2). For each round t ∈ [T ], the
observed reward xt for action at , is sampled independently from
the true distribution Pat ∈ Pk (or Pat ∈ Pc

k ) with probability 1 − α;
otherwise is sampled from some arbitrary and unknown
contamination distribution Gat ∈ G.
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Privacy

Definition (Differential Privacy for MABs)
For any ϵ > 0, a learning algorithm M : RT → [K ]T is ϵ-DP if for all
sequences DT ,D′

T ∈ RT differing only in a single element and for all
events E ⊂ [K ]T , we have

P [M(DT ) ∈ E ] ≤ eϵ · P
[
M
(
D′

T
)
∈ E

]
.
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Regrets
• µa: the mean of the inlier distribution of arm a ∈ [K ];
• µ∗ = maxa∈[K ] µa;
• Πϵ: the set of all ϵ-DP MAB algorithms;
• Eα,k : the set of all instances of heavy-tailed MABs (with

parameter k ) with Huber contamination (of level α).

Definition (Clean Regret)
Fix an algorithm π ∈ Πϵ and an instance ν ∈ Eα,k . Then, the clean
regret of π under ν is given by RT (π, ν) := Eπ,ν [Tµ∗ −

∑T
t=1 µat ].

To capture the intrinsic difficulty of the private and robust MAB
problem, we are also interested in its minimax regret.

Definition (Minimax Regret)
The minimax regret of our private and robust MAB problem is
defined as Rminimax

ϵ,α,k := infπ∈Πϵ supν∈Eα,k
Eπ,ν [Tµ∗ −

∑T
t=1 µat ].
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Lower Bound

Theorem

Consider a private and robust MAB problem where inlier distributions
have finite k -th raw (or central) moments (k ≥ 2). Then, its minimax
regret satisifes

Rminimax
ϵ,α,k = Ω

(√
KT + (K/ϵ)1− 1

k T
1
k + Tα1− 1

k

)
.
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A Meta Algorithm
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Finite Raw Moment Case

Theorem (Performance Guarantees)

Consider a private and robust MAB with inlier distributions satisfying
Definition 1 and 0 < α ≤ α1 ∈ (0,1/2). Let Algorithm 1 be instantiated
with Algorithm 2 . Set T = Ω( log(1/δ)α1

) and δ = 1/T . Then Algorithm 1 is
ϵ-DP with its regret upper bound

RT = O

(√
KT logT +

(
K logT

ϵ

) k−1
k

T
1
k +Tα

1− 1
k

1 +
K logT

α1

)
.
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Finite Central Moment Case
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Finite Central Moment Case

Theorem (Performance Guarantees, α = 0)

Let Algorithm 1 be instantiated with Algorithm 3. Set T = Ω( log(D/δ)
ϵ )

and δ = 1/T . Then, Algorithm 1 is ϵ-DP with its regret upper bound

RT = O(
√

KT logT +(K logT/ϵ)
k−1

k T
1
k +γ),

where γ := O (KD log(DT )/ϵ).

Theorem (Performance Guarantees, α > 0)

For α ≤ α1 ∈ (0,0.133), let Algorithm 1 be instantiated with Algorithm
3. Set δ = 1/T , then Algorithm 1 is ϵ-DP with its regret upper bound

RT = O(
√

KT logT+(K logT/ϵ)
k−1

k T
1
k +Tα

1− 1
k

1 +γ̂),

where γ̂ := O
(

DK log T
α2

1
+ ιDK log T

ϵ + DK log(DT )
ϵ

)
and ι = 1−α

0.249−α .
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Experiments

• PRAE-R: Our Algorithm for Finite Raw Moment Case
• PRAE-C: Our Algorithm for Finite Central Moment Case
• DPRSE [Tao et al., 2021]: DP heavy-tailed MAB
• RUCB [Kapoor et al., 2019]: non-private robust algorithm
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(a) α = 2%, ϵ = 0.2
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Figure: Experimental results under Pareto distribution
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Experiments
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(a) α = 5%, ϵ = 0.5
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(b) α = 5%, ϵ = 1
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(c) α = 10%, ϵ = 0.5
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(d) α = 10%, ϵ = 1

Figure: Experimental results under Student’s t reward
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Thank you!
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