

Combating Representation Learning Disparity with Geometric Harmonization

Zhihan Zhou

CMIC Shanghai Jiao Tong University

Coauthor with Jiangchao Yao, Feng Hong, Ya Zhang, Bo Han, Yanfeng Wang

NeurIPS 2023 Spotlight

饮水思源•爱国荣校

Real-world natural resources usually follow a long-tailed distribution.

The importance of long-tailed learning is further emphasized when extended to a range of safetycritical scenarios, including medical intelligence, autonomous driving and criminal surveillance.

[1]Wang et al. "Learning to model the tail." NeurIPS 2017

[2]Van Horn et al. "The inaturalist species classification and detection dataset." CVPR 2018

Existing works

Method	Aspect	Description
Focal [40]	Sample Reweighting	Hard example mining
rwSAM [41]	Optimization Surface	Data-dependent sharpness-aware minimization
SDCLR [28]	Model Pruning	Model pruning and self-contrast
DnC [59]	Model Capacity	Multi-expert ensemble
BCL [77]	Data Augmentation	Memorization-guided augmentation
GH	Loss Limitation	Geometric harmonization

Few works have considered the *intrinsic limitation* of the widely-adopted contrastive learning loss, which easily leads to *representation learning disparity* where head classes dominate the feature regime but tail classes passively collapse.

Motivation

Why the conventional contrastive learning underperforms in self-supervised long-tailed context?
 Conventional contrastive loss motivates *sample-level uniformity*, that is biased towards the head classes.
 Geometric Harmonization aims at achieving *category-level uniformity*, *i.e.*, equal allocation *w.r.t.* classes.

Contrastive learning causes severer representation learning disparity when enlarging the imbalance ratios.

Geometric Harmonization

> Challenges I: No guarantee for the desired category-level uniformity

> Challenges II: The latent true labels are not available, while the estimated labels are noisy

Geometric Uniform Structure

$$\mathbf{M}_i^{\top} \cdot \mathbf{M}_j = C, \ \forall i, j \in \{1, 2, \dots, K\}, \ i \neq j,$$

Any two vectors in **M** have the same angle, namely, the unit space are equally partitioned by the vectors.

Overall objective

$$\min_{\theta, \hat{\mathbf{Q}}} \mathcal{L} = \mathcal{L}_{\text{InfoNCE}} + w_{\text{GH}} \mathcal{L}_{\text{GH}},$$

Surrogate Label Allocation

$$\min_{\hat{\mathbf{Q}} = [\hat{\boldsymbol{q}}_1, \dots, \hat{\boldsymbol{q}}_N]} \mathcal{L}_{\text{GH}} = -\frac{1}{|\mathcal{D}|} \sum_{\boldsymbol{x}_i \sim \mathcal{D}} \hat{\boldsymbol{q}}_i \log \boldsymbol{q}_i,$$

s.t. $\hat{\mathbf{Q}} \cdot \mathbb{1}_N = N \cdot \boldsymbol{\pi}, \ \hat{\mathbf{Q}}^\top \cdot \mathbb{1}_K = \mathbb{1}_N,$

Algorithm 1 Surrogate Label Allocation.

Input: geometric cost matrix $\exp(\lambda \log \mathbf{Q})$ with $\mathbf{Q} = [q_1, \dots, q_N]$, marginal distribution constraint π , Sinkhorn regularization coefficient λ , Sinkhorn iteration step E_s Output: Surrogate label matrix $\hat{\mathbf{Q}}$ 1: Set scaling vectors $\mathbf{u} \leftarrow \frac{1}{K} \cdot \mathbb{1}_K, \mathbf{v} \leftarrow \frac{1}{N} \cdot \mathbb{1}_N$. 2: Set distribution constraints $\mathbf{r} \leftarrow \frac{1}{N} \cdot \mathbb{1}_N, \mathbf{c} \leftarrow \pi$. 3: for iteration $i = 0, 1, \dots, E_s$ do 4: $\mathbf{u} \leftarrow \log \mathbf{c} - \log ((\exp(\lambda \log \mathbf{Q})) \cdot \exp(\mathbf{v}))$. 5: $\mathbf{v} \leftarrow \log \mathbf{r} - \log ((\exp(\lambda \log \mathbf{Q}))^\top \cdot \exp(\mathbf{u}))$. 6: end for 7: return $\hat{\mathbf{Q}} = N \cdot \operatorname{diag}(\mathbf{u}) \exp(\lambda \log \mathbf{Q}) \operatorname{diag}(\mathbf{v})$

Geometric Harmonization

> Our GH can promote the desired category-level uniformity!

D	ataset	SimCLR	+GH	Focal	+GH	SDCLR	+GH	DnC	+GH	BCL	+GH	Improv.
CIFAR-R100	Many	54.97	57.38	54.24	57.01	57.32	57.44	55.41	57.56	59.15	59.50	+1.56
	Med	49.39	52.27	49.58	52.93	50.70	52.85	51.30	53.74	54.82	55.73	+2.35
	Few	47.67	52.12	49.21	51.74	50.45	54.06	50.76	53.26	55.30	57.67	+3.09
	Std	3.82	2.99	2.80	2.76	3.90	2.38	2.54	2.36	2.37	1.89	-0.61
	Avg	50.72	53.96	51.04	53.92	52.87	54.81	52.52	54.88	56.45	57.65	+2.32
CIFAR-R50	Many	56.00	58.88	55.40	57.97	57.50	58.47	56.03	59.04	59.44	60.82	+2.16
	Med	50.48	53.00	51.14	53.55	51.85	53.88	52.68	55.05	54.73	57.58	+2.44
	Few	50.12	54.27	50.02	53.58	52.15	53.58	50.83	54.81	57.30	58.55	+2.87
	Std	3.30	3.09	2.84	2.54	3.18	2.74	2.64	2.38	2.36	1.66	-0.38
	Avg	52.24	55.42	52.22	55.06	53.87	55.34	53.21	56.33	57.18	59.00	+2.49
CIFAR-R10	Many	57.85	59.26	58.18	60.06	58.47	59.21	59.82	61.09	60.41	61.41	+1.26
	Med	55.06	56.91	55.82	56.79	54.79	56.06	56.67	58.33	57.15	59.27	+1.57
	Few	54.03	55.85	54.64	57.24	52.97	55.58	56.21	57.33	59.76	60.30	+1.74
	Std	1.98	1.75	1.80	1.77	2.80	1.97	1.96	1.95	1.73	1.07	-0.35
	Avg	55.67	57.36	56.23	58.05	55.44	56.97	57.59	58.94	59.12	60.34	+1.52
ImageNet-LT	Many	41.69	41.53	42.04	42.55	40.87	41.92	41.70	42.19	42.92	43.22	+0.44
	Med	33.96	36.35	35.02	36.75	33.71	36.53	34.68	36.63	35.89	38.16	+2.23
	Few	31.82	35.84	33.32	36.28	32.07	36.04	33.58	35.86	33.93	36.96	+3.25
	Std	5.19	3.15	4.62	3.49	4.68	3.26	4.41	3.45	4.73	3.32	-1.39
	Avg	36.65	38.28	37.49	38.92	36.25	38.53	37.23	38.67	38.33	39.95	+1.68
Places-LT	Many	31.98	32.46	31.69	32.40	32.17	32.78	32.07	32.51	32.69	33.22	+0.55
	Med	34.05	35.03	34.33	35.14	34.71	35.60	34.51	35.55	35.37	36.00	+0.87
	Few	35.63	36.14	35.73	36.49	35.69	36.18	35.84	35.91	37.18	37.62	+0.45
	Std	1.83	1.89	2.05	2.08	1.82	1.82	1.91	1.87	2.26	2.23	0.00
	Avg	33.61	34.33	33.65	34.42	33.99	34.70	33.90	34.52	34.76	35.32	+0.68

GH provides consistent
improvements on top of all the
baseline methods in terms of
linear probing accuracy and
representation balancedness.

_	

Dataset		Logit adjustment pretrained with the following SSL methods						
		SimCLR	+GH Focal	+GH SDCLR	+GH DnC	+GH BCL	+GH	
CIFAR-LT ImageNet-LT Places-LT	46.61 48.27 27.07	49.81 51.10 32.63	50.84 49.83 51.67 51.15 33.86 32.69	51.0449.7951.8250.9433.7532.55	50.7349.9751.6451.3134.0332.98	50.8450.3851.8851.4334.0933.15	51.32 +1.00 52.06 +0.63 34.48 +1.24	

	Image Clas	sification		Fi	ne-Grained Vis	sual Classification	on		
	ImageNet	Places	CUB200	Aircraft	StanfordCars	StanfordDogs	NABirds	Average	Pretrained on large-scale
SimCLR	52.06	37.65	44.61	65.89	57.63	50.99	46.86	53.20	long-tailed CC3M!
+GH	53.39	38.47	45.76	68.08	60.24	52.88	47.58	54.91	-

GH can potentially further boost the supervised long-tailed learning and downstream fine-grained classification, object detection and instance segmentation.

	Ob	ject Detec	tion	Instance Segmentation			
	APbbox	AP_{50}^{bbox}	AP_{75}^{bbox}	AP^{mask}	AP_{50}^{mask}	AP_{75}^{mask}	
SimCLR	31.7	51.0	33.9	30.2	49.8	32.1	
+GH	32.7	52.2	35.2	31.1	50.8	33.0	

Conventional contrastive learning fails under long-tailed distribution.

- ≻ The intrinsic limitation lies in *pursuing sample-level uniformity*.
- ➢ We propose GH to efficiently *promote category-level uniformity* via an instance-wise label calibration based on the geometric statistics.
- ➤GH is theoretically and empirically verified to *tackle representation learning disparity and enhance downstream generalization*.

Thanks! Codes will be available at:

https://github.com/MediaBrain-SJTU/Geometric-Harmonization

