Neural Relation Graph: A Unified Framework for Identifying Label Noise and Outlier Data

Jang-Hyun Kim¹, Sangdoo Yun², Hyun Oh Song¹

¹Seoul National University ²NAVER AI Lab

NeurIPS 2023

Goal of research

- Dataset cleaning: Identifying problematic data
 - Identifying problems regarding labels or input data
 - Developing domain-agnostic and scalable methods for label error and outlier detection

- Data analysis: Characterizing data points
 - Answering "Why does the model make such predictions?" from a data perspective
 - Building a more reliable evaluation system

Conventional approach

- Conventional approach for identifying problematic data is to measure an **unary score** for each data:
 - prediction margin¹
 - self-influence²
 - sensitivity³

¹Northcutt et al., Confident learning: Estimating uncertainty in dataset labels, 2021 ²Koh et al., Understanding black-box predictions via influence functions, 2017

 $^{3}\mbox{Liang et al., Enhancing the reliability of out-of-distribution image detection in neural networks, 2018$

Proposed approach

• We propose a unified approach for detecting label noise and outlier data by utilizing relational structure of data.

Assumption

- Noisy training dataset $\mathcal{T} = \{(x_i, y_i) \mid i = 1, \dots, n\}.$
 - May have problems in x_i (outlier) or y_i (label error).
- Trained neural networks on \mathcal{T} .
 - Extract feature representation f_i .
 - Measure the semantic similarity $k : \mathcal{X} \times \mathcal{X} \rightarrow [0, M]$ between data (higher means more similarity).

Data relation

• Given data (x_i, y_i) and (x_j, y_j) , we define relation between data: $r((x_i, y_i), (x_j, y_j)) = 1(y_i = y_j) \cdot k(x_i, x_j).$

Here, $1(y_i = y_j) \in \{-1, 1\}.$

• Similar to the influence function, data relation quantifies the complementarity of a data pair.

- Goal: Measure the label noisiness score $s \in \mathbb{R}^n$ for dataset $\mathcal{T} = \{1, \dots, n\}.$
 - A higher score indicates a higher likelihood of label error.

- Goal: Measure the label noisiness score $s \in \mathbb{R}^n$ for dataset $\mathcal{T} = \{1, \dots, n\}.$
 - A higher score indicates a higher likelihood of label error.
- We consider a fully-connected undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$.
 - Node set $\mathcal{V} = \mathcal{T}$.
 - Weights ${\mathcal W}$ on edges ${\mathcal E}$ are the negative relation values:

$$w(i, j) = -r(i, j) = -r((x_i, y_i), (x_j, y_j)).$$

• Simple approach: Aggregate edge weights as $s[i] = \sum_{j=1}^{n} w(i, j)$. \Rightarrow Edge values can affect both the clean and unclean data.

- Simple approach: Aggregate edge weights as s[i] = ∑_{j=1}ⁿ w(i, j).
 ⇒ Edge values can affect both the clean and unclean data.
- We jointly estimate the **noisy subset** $\mathcal{N} \subset \mathcal{T}$ that are likely to have incorrect labels:

$$\mathcal{N}^* = \underset{\mathcal{N} \subset \mathcal{T}}{\operatorname{argmax}} \operatorname{cut}(\mathcal{N}, \mathcal{T} \setminus \mathcal{N}) \Big(\coloneqq \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{T} \setminus \mathcal{N}} w(i, j) \Big) - \lambda |\mathcal{N}|.$$

 \Rightarrow Max-cut problem, which is NP-hard.

• Motivated by Kerninghan-Lin algorithm, we alternatively update s and $\mathcal{N}:$

$$\begin{split} s[i] &= \sum_{j \in \mathcal{T} \setminus \mathcal{N}} w(i,j) - \sum_{j \in \mathcal{N}} w(i,j) \\ \mathcal{N} &= \{i \mid s[i] > \lambda, i \in [1, \dots, n]\}. \end{split}$$

OOD/outlier detection

Outlier score calculation

• We measure the **outlier score** (higher scores indicate greater outlierness) of a data point x as

outlier(x) =
$$\frac{1}{\sum_{i \in S} k(x, x_i)}$$

• Here, S is a random subset of T.

- Reflect global characteristics of data distribution.
- Only 1% is enough in the case of ImageNet.

Kernel function

• We propose the following class of bounded kernel:

$$k(x_i, x_j) = |s(\mathbf{f}_i, \mathbf{f}_j) \cdot c(\mathbf{p}_i, \mathbf{p}_j)|^t,$$

where hyperparameter $t > 0 \mbox{ controls the kernel distribution's sharpness.} \label{eq:total_star}$

- Feature similarity: $s(\mathbf{f}_i, \mathbf{f}_j) = \max(0, \cos(\mathbf{f}_i, \mathbf{f}_j))$
- Prediction compatibility: $c(\mathbf{p}_i, \mathbf{p}_j) = P(\widehat{y}_i = \widehat{y}_j) = \mathbf{p}_i^\mathsf{T} \mathbf{p}_j$
- Our framework demonstrates strong performance across various kernel types, including RBF kernels.

Experiment results: Label error detection

• An MAE-Large model on ImageNet with synthetic label noise.

Experiment results: Label error detection

 Detected data samples with label errors from ImageNet and SST2 (text sentiment classification).

Negative	Positive (-0.850)	Positive (-0.846)
"entertaining and informative documentary"	"entertaining movie"	"fascinating and timely content

Experiment results: OOD detection

An MAE-Large model on ImageNet validation set with various OOD datasets.

Experiment results: Outliers in validation set

• Detected outlier validation samples from ImageNet (top) and SST2 (bottom).

Summary

- We propose a unified approach for identifying label errors and outlier data points.
- We develop domain-agnostic and scalable detection algorithms.
- https://github.com/snu-mllab/Neural-Relation-Graph

