
Scattering Vision Transformer: Spectral Mixing Matters

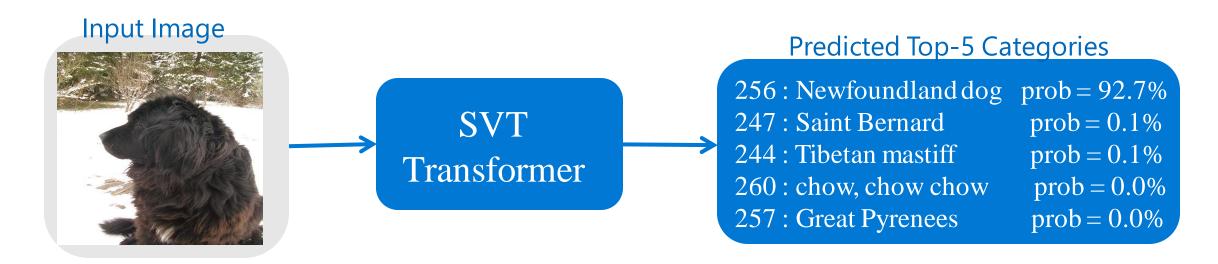
Badri Patro and Vijay Agneeswaran Microsoft

SVT Model

Badri N. Patro

Vijay Agneeswaran

Agenda


*** Goals *** Introduction ***** Related Work * Method ***** Data ***** Results ***** Business Use-Case

Given an input image, the model need to prediction a category out of 1000 predefined category.

To make efficient transformer in terms of parameter, Computation and make more robust feature representation

Introduction

Issues in TransformerProposed Solution

Issues in Vision Transformer

Computational Complexity increase quadratic with Sequence Length.

- Thus, existing solutions commonly employ down-sampling operations (e.g., average pooling) over keys/values to dramatically reduce the computational cost.
- Unfortunately, such operations are non-invertible and can result in information loss.
- Memory (#Parameters)
- Computation Cost (#Gflops)
- Latency

Issue of capturing fine-grained information within images effectively

Proposed Solution

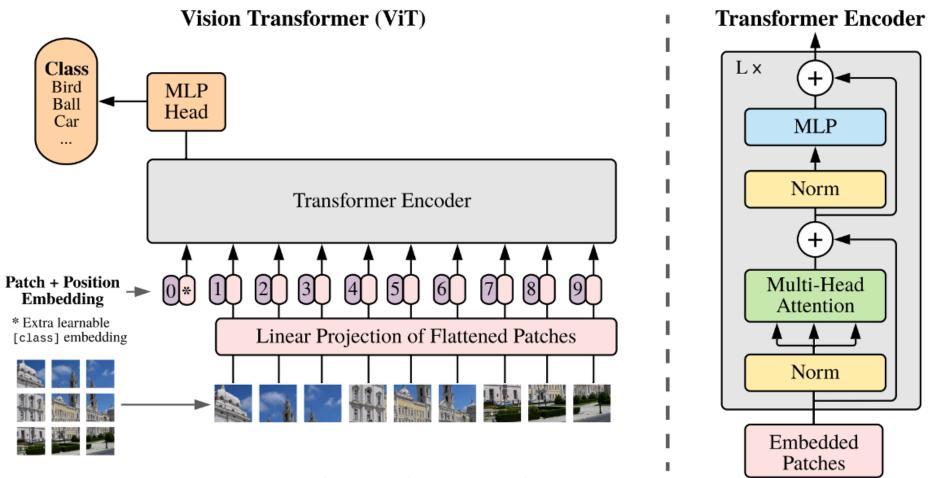
SCATTERING TRANSFORMATION: DTCWT

SPECTRAL GATING NETWORK : TBM AND EBM CHANNEL AND TOKEN MIXING

Contribution

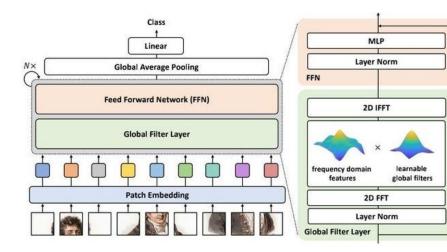
We introduce a novel invertible scattering network based on DTCWT transformation into vision transformers to decompose image features into low-frequency and high-frequency features

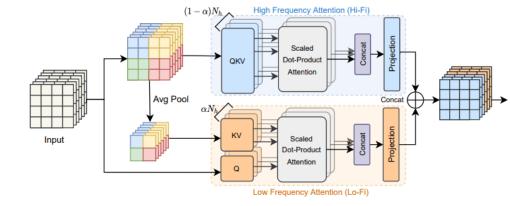
We proposed a novel SGN, which uses TBM to mix low-frequency components and EBM to mix high-frequency components.


We use an efficient way of mixing high-frequency components using channel and token mixing with the help of Einstein multiplication

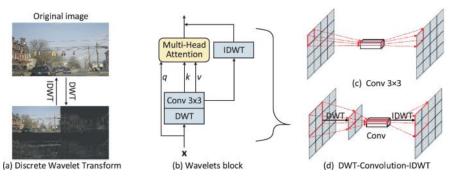
We use tensor multiplication in low-frequency components and Einstein multiplication in high-frequency components leading to an efficient implementation of SVT, both in the number of parameters and computational complexity.

Related work


Vision Transformer

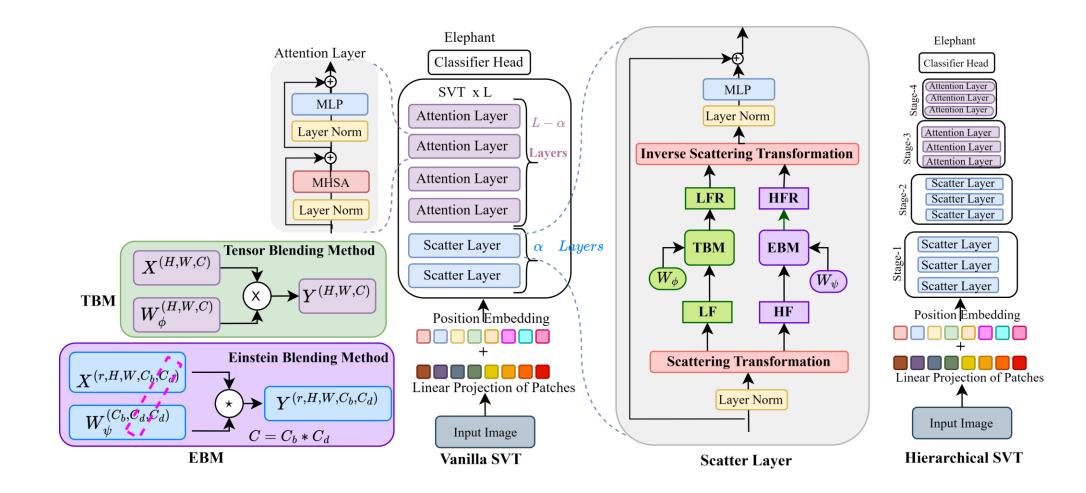


Treat each patch as a token (like a word) in NLP



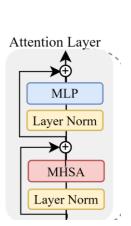
Spectral Vision Transformers

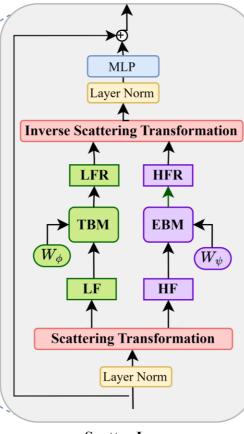
Hilo Attention [Pan et. al., NeurIPS 2022]

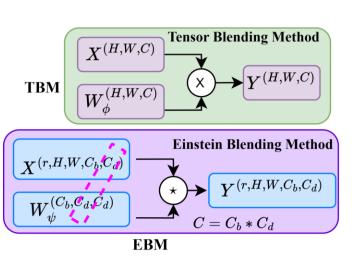

WaveViT, [Yao et al. ECCV 2022]

GFNet, [Rao et al. NeurIPS 2021]

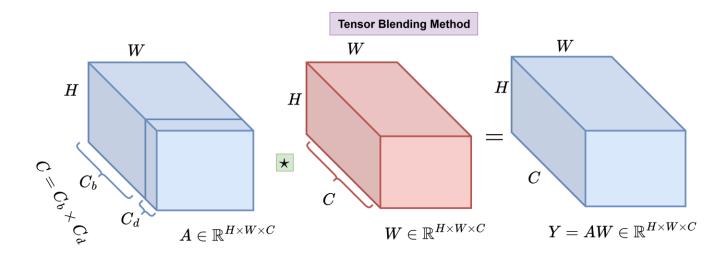
Methodology

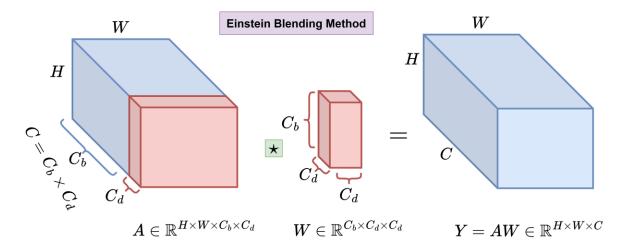



SVT Model Diagram



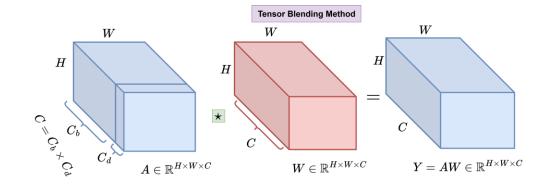
SVT Model Diagram





Scatter Layer

Einstein Blending Method



Dual Tree Complex Wavelet Transform (DTCWT)

$$\mathbf{X}_{F}(u,v) = \mathbf{X}_{\phi}(u,v) + \mathbf{X}_{\psi}(u,v) = \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} c_{M,h,w} \phi_{M,h,w} + \sum_{m=0}^{M-1} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} \sum_{k=1}^{6} d_{m,h,w}^{k} \psi_{m,h,w}^{k}$$

Tensor Blending Method

$$\mathcal{M}_{\phi} = [\mathbf{X}_{\phi} \odot \mathcal{W}_{\phi}], \quad \text{where } (\mathbf{X}_{\phi}, \mathcal{W}_{\phi}) \in \mathcal{R}^{C \times H \times W}, \text{ and } \mathbf{M}_{\phi} \in \mathcal{R}^{C \times H \times W},$$

Einstein Blending Method $\mathbf{Y}^{H \times W \times C_b \times C_d} = \mathbf{A}^{H \times W \times C_b \times C_d} \circledast \mathbf{W}^{C_b \times C_d \times C_d}$ EBM for Channel Mixing $\mathbf{W} = \mathbf{W}^{C_b \times C_d \times C_d} \qquad \mathbf{W} \in \mathbb{R}^{H \times W \times C_b \times C_d} \qquad \mathbf{W} \in \mathbb{R}^{C_b \times C_d \times C_d} \qquad \mathbf{W} \in \mathbb{R}^{C_b \times C_d \times C_d} \qquad \mathbf{W} \in \mathbb{R}^{C_b \times C_d \times C_d} \qquad \mathbf{W} \in \mathbb{R}^{H \times W \times C_b \times C_d}$

 $\mathbf{S}_{\psi_c}^{2 \times k \times H \times W \times C_b \times C_d} = \mathbf{X}_{\psi}^{2 \times k \times H \times W \times C_b \times C_d} \circledast \mathbf{W}_{\psi_c} \mathbf{C}_b \times \mathbf{C}_d \times \mathbf{C}_d + b_{\psi_c}$

EBM for Token Mixing

$$\mathbf{S}_{\psi_t}^{2 \times k \times C \times W \times H} = \mathbf{S}_{\psi_c}^{2 \times k \times C \times W \times H} \circledast \mathbf{W}_{\psi_t}^{W \times H \times H} + b_{\psi_t}$$

Data

Data

ImageNet Dataset Details:

- Train Set examples = **1200K**
- Test Set examples = **50K**

The CIFAR-10, and CIFAR 100 Dataset Details:

- Train Set examples = **50K**
- Test Set examples = **10K**

Flower Dataset

- Training set: The training set consists of **1,020 images** of flowers, with at least 10 images per category.
- Test set: The test set consists of the remaining 7,169 images of flowers, with at least 20 images per category.

Stanford CAR Dataset

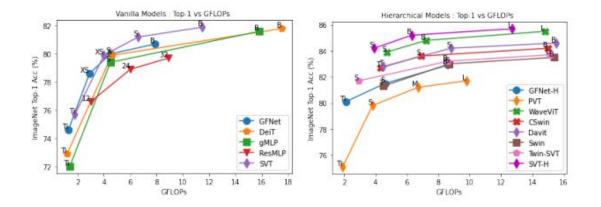
- Training set: The training set consists of 8,144 images of cars from 98 different classes.
- Test set: The test set consists of 8,041 images of cars from the remaining 98 classes.
- Link : <u>SVT_Data.docx (sharepoint.com)</u>

Results

SOTA on ImageNet

Method	Params	GFLOPs	Top-1	Top-5	Method	Params	GFLOPs	Top-1	Top-5
	Smal	1				Large	,		
ResNet-50 [22]	25.5M	4.1	78.3	94.3	ResNet-152 [22]	60.2M	11.6	81.3	95.5
BoTNet-S1-50 [48]	20.8M	4.3	80.4	95.0	ResNeXt101 [63]	83.5M	15.6	81.5	-
Cross-ViT-S [6]	26.7M	5.6	81.0	-	gMLP-B [36]	73.0M	15.8	81.6	-
Swin-T [37]	29.0M	4.5	81.2	95.5	DeiT-B [52]	86.6M	17.6	81.8	95.6
ConViT-S [15]	27.8M	5.4	81.3	95.7	SE-ResNet-152 [24]	66.8M	11.6	82.2	95.9
T2T-ViT-14 [68]	21.5M	4.8	81.5	95.7	Cross-ViT-B [6]	104.7M	21.2	82.2	-
RegionViT-Ti+ [5]	14.3M	2.7	81.5	-	ResNeSt-101 [71]	48.3M	10.2	82.3	-
SE-CoTNetD-50 [34]	23.1M	4.1	81.6	95.8	ConViT-B [15]	86.5M	16.8	82.4	95.9
Twins-SVT-S [10]	24.1M	2.9	81.7	95.6	PoolFormer-M48 [67]	73.0M	11.8	82.5	-
CoaT-Lite Small [64]	20.0M	4.0	81.9	95.5	T2T-ViTt-24 [68]	64.1M	15.0	82.6	95.9
PVTv2-B2 [58]	25.4M	4.0	82.0	96.0	TNT-B [20]	65.6M	14.1	82.9	96.3
LITv2-S [40]	28.0M	3.7	82.0	-	CycleMLP-B4 [7]	52.0M	10.1	83.0	-
MViTv2-T [33]	24.0M	4.7	82.3	-	DeepViT-L [74]	58.9M	12.8	83.1	-
Wave-ViT-S [66]	19.8M	4.3	82.7	96.2	RegionViT-B [5]	72.7M	13.0	83.2	96.1
CSwin-T [13]	23.0M	4.3	82.7	-	CycleMLP-B5 [7]	76.0M	12.3	83.2	-
DaViT-Ti [12]	28.3M	4.5	82.8	-	ViP-Large/7 [23]	88.0M	24.4	83.2	-
SVT-H-S	21.7M	3.9	83.1	96.3	CaiT-S36 [53]	68.4M	13.9	83.3	-
iFormer-S[47]	20.0M	4.8	83.4	96.6	AS-MLP-B [35]	88.0M	15.2	83.3	-
CMT-S [18]	25.1M	4.0	83.5	-	BoTNet-S1-128 [48]	75.1M	19.3	83.5	96.5
MaxViT-T [54]	31.0M	5.6	83.6	-	Swin-B [37]	88.0M	15.4	83.5	96.5
Wave-ViT-S* [66]	22.7M	4.7	83.9	96.6	Wave-MLP-B [49]	63.0M	10.2	83.6	-
SVT-H-S*	22.0M	3.9	84.2	96.9	LITv2-B [40]	87.0M	13.2	83.6	-
	Base				PVTv2-B4 [58]	62.6M	10.1	83.6	96.7
ResNet-101 [22]	44.6M	7.9	80.0	95.0	ViL-Base [72]	55.7M	13.4	83.7	-
BoTNet-S1-59 [48]	33.5M	7.3	81.7	95.8	Twins-SVT-L [10]	99.3M	15.1	83.7	96.5
T2T-ViT-19 [68]	39.2M	8.5	81.9	95.7	Hire-MLP-Large [19]	96.0M	13.4	83.8	-
CvT-21 [60]	32.0M	7.1	82.5	-	RegionViT-B+ [5]	73.8M	13.6	83.8	-
GFNet-H-B [44]	54.0M	8.6	82.9	96.2	Focal-Base [65]	89.8M	16.0	83.8	96.5
Swin-S [37]	50.0M	8.7	83.2	96.2	PVTv2-B5 [58]	82.0M	11.8	83.8	96.6
Twins-SVT-B [10]	56.1M	8.6	83.2	96.3	SE-CoTNetD-152 [34]	55.8M	17.0	84.0	97.0
SE-CoTNetD-101 [34]	40.9M	8.5	83.2	96.5	DAT-B [61]	88.0M	15.8	84.0	-
PVTv2-B3 [58]	45.2M	6.9	83.2	96.5	LV-ViT-M* [26]	55.8M	16.0	84.1	96.7
LITv2-M [40]	49.0M	7.5	83.3	-	CSwin-B [13]	78.0M	15.0	84.2	-
RegionViT-M+ [5]	42.0M	7.9	83.4	-	HorNet- B_{GF} [43]	88.0M	15.5	84.3	-
MViTv2-S [33]	35.0M	7.0	83.6	-	DynaMixer-L [59]	97.0M	27.4	84.3	-
CSwin-S [13]	35.0M	6.9	83.6	-	MViTv2-B [33]	52.0M	10.2	84.4	-
DaViT-S [12]	49.7M	8.8	84.2	-	DaViT-B [12]	87.9M	15.5	84.6	-
VOLO-D1* [69]	26.6M	6.8	84.2	-	CMT-L [18]	74.7M	19.5	84.8	-
CMT-B [18]	45.7M	9.3	84.5	-	MaxViT-B [54]	120.0M	23.4	85.0	-
MaxViT-S [54]	69.0M	11.7	84.5	-	VOLO-D2* [69]	58.7M	14.1	85.2	-
iFormer-B[47]	48.0M	9.4	84.6	97.0	VOLO-D3* [69]	86.3M	20.6	85.4	-
Wave-ViT-B* [66]	33.5M	7.2	84.8	97.1	Wave-ViT-L* [66]	57.5M	14.8	85.5	97.3
SVT-H-B*	32.8M	6.3	85.2	97.3	SVT-H-L*	54.0M	12.7	85.7	97.5

Similar Architect


Table 3: This shows a performance comparison of SVT with similar Transformer Architecture with different sizes of the networks on ImageNet-1K. \star indicates additionally trained with the Token Labeling objective using MixToken[26].

-								
Network Params GFLOPs Top-1 Top-5								
Vanilla Transformer Comparison								
FFC-ResNet-50 [8] 26.7M - 77.8 -								
-	-	73.3	91.7					
7M	1.3	74.6	92.2					
9M	1.8	76.9	93.4					
46.1M	-	78.8	-					
15M	2.9	71.2	-					
16M	2.9	78.6	94.2					
25M	4.5	80.0	94.9					
19.9M	4.0	79.9	94.5					
32.2M	6.6	81.5	95.3					
62.6M	-	78.9	-					
43M	7.9	80.7	95.1					
57.6M	11.8	82.0	95.6					
	Transform 26.7M - 7M 9M 46.1M 15M 16M 25M 19.9M 32.2M 62.6M 43M	Transformer Comparis 26.7M - 7M 1.3 9M 1.8 46.1M - 15M 2.9 16M 2.9 25M 4.5 19.9M 4.0 32.2M 6.6 62.6M - 43M 7.9	Zef.7M - 77.8 - - 73.3 7M 1.3 74.6 9M 1.8 76.9 46.1M - 78.8 15M 2.9 71.2 16M 2.9 78.6 25M 4.5 80.0 19.9M 4.0 79.9 32.2M 6.6 81.5 62.6M - 78.9 43M 7.9 80.7	Transformer Comparison 26.7M - 77.8 - - - 73.3 91.7 7M 1.3 74.6 92.2 9M 1.8 76.9 93.4 46.1M - 78.8 - 15M 2.9 71.2 - 16M 2.9 78.6 94.2 25M 4.5 80.0 94.9 19.9M 4.0 79.9 94.5 32.2M 6.6 81.5 95.3 62.6M - 78.9 - 43M 7.9 80.7 95.1				

Hierarchical Transformer Comparison								
GFNet-H-S [44]	32M	4.6	81.5	95.6				
LIT-S [41]	27M	4.1	81.5		-			
iFormer-S[47]	20	4.8	83.4	96.6				
Wave-ViT-S* [66]	22.7M	4.7	83.9	96.6				
SVT-H-S	21.7M	3.9	83.1	96.3				
SVT-H-S*	22.0M	3.9	84.2	96.9				
GFNet-H-B [44]	54M	8.6	82.9	96.2				
LIT-M [41]	48M	8.6	83.0		-			
LITv2-M [40]	49.0M	7.5	83.3	-				
iFormer-B[47]	48	9.4	84.6	97.0				
Wave-MLP-B [49]	63.0M	10.2	83.6	-				
Wave-ViT-B* [66]	33.5M	7.2	84.8	97.0				
SVT-H-B*	32.8M	6.3	85.2	97.3				
LIT-B [41]	86M	15.0	83.4	-				
LITv2-B [40]	87.0M	13.2	83.6	-				
HorNet- B_{GF} [43]	88.0M	15.5	84.3	-				
iFormer-L[47]	87.0M	14.0	84.8	97.0				
Wave-ViT-L* [66]	57.5M	14.8	85.5	97.3				
SVT-H-L*	54.0M	12.7	85.7	97.5				

Model Performance

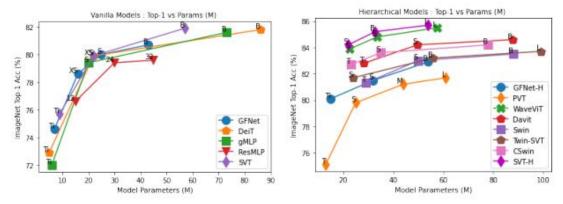


Figure 2: Comparison of ImageNet Top-1 Accuracy (%) vs GFLOPs of various models in Vanilla and Hierarchical architecture.

Figure 3: Comparison of ImageNet Top-1 Accuracy (%) vs Parameters (M) of various models in Vanilla and Hierarchical architecture.

Ablation Analysis

Backbone Low Freque		requency	High F	requency	Params (M)	FLOPs (G)	Top-1 (%)	Top-5 (%)
	Token	Channel	Token	Channel				
SVT _{TTTT}	Т	Т	Т	Т	25.18	4.4	83.97	96.86
SVT_{EETT}	E	E	Т	Т	21.90	4.1	83.87	96.67
SVT_{EEEE}	E	Е	E	Е	21.87	3.7	83.70	96.56
SVT_{TTEE}	Т	Т	E	E	22.01	3.9	84.20	96.82
SVT _{TTEX}	Т	Т	E	×	21.99	4.0	84.06	96.76
SVT_{TTXE}	Т	Т	×	Е	22.25	4.1	84.12	96.91

Table 7: SVT model comprises low-frequency component and High-frequency component with the help of scattering net using Dual tree complex wavelet transform. Each frequency component is controlled by parameterized by weight matrix using Patch mixing and/or Channel Mixing. this table shows details about all combinations and SVT_{TTEE} is outperforms among them.

Ablation Analysis

Table 4: This table shows the ablation analysis of various spectral layers in SVT architecture such as FN, FFC, WGN, and FNO. We conduct this ablation study on the small-size networks in stage architecture. This indicates that SVT performs better than other kinds of networks.

Model	Params	FLOPs	Top-1	Top-5	Invertible
	(M)	(G)	(%)	(%)	loss(↓)
FFC	21.53	4.5	83.1	95.23	_
FN	21.17	3.9	84.02	96.77	_
FNO	21.33	3.9	84.09	96.86	3.27e-05
WGN	21.59	3.9	83.70	96.56	8.90e-05
SVT	22.22	3.9	84.20	96.93	6.64e-06

MCDS

Transfer Learning

Table 5: **Results on transfer learning datasets**. We report the top-1 accuracy on the four datasets.

Model	CIFAR 10	CIFAR 100	Flowers 102	Cars 196
ResNet50 [22]	-	-	96.2	90.0
ViT-B/16 [14]	98.1	87.1	89.5	-
ViT-L/16 [14]	97.9	86.4	89.7	-
Deit-B/16 [52]	99.1	90.8	98.4	92.1
ResMLP-24 [51]	98.7	89.5	97.9	89.5
GFNet-XS [44]	98.6	89.1	98.1	92.8
GFNet-H-B [44]	99.0	90.3	98.8	93.2
SVT-H-B	99.22	91.2	98.9	93.6

Task Learning

Table 6: The performances of various vision backbones on COCO val2017 dataset for the downstream instance segmentation task such as Mask R-CNN 1x [21] method. We adopt Mask R-CNN as the base model, and the bounding box and mask Average Precision (*i.e.*, AP^b and AP^m) are reported for evaluation

Backbone	AP^{b}	AP_{50}^b	AP_{75}^{b}	AP^m	AP_{50}^m	AP_{75}^m
ResNet50 [22]	38.0	58.6	41.4	34.4	55.1	36.7
Swin-T [37]	42.2	64.6	46.2	39.1	61.6	42.0
Twins-SVT-S [10]	43.4	66.0	47.3	40.3	63.2	43.4
LITv2-S [40]	44.9	-	-	40.8	-	-
RegionViT-S [5]	44.2	-	-	40.8	-	-
PVTv2-B2 [58]	45.3	67.1	49.6	41.2	64.2	44.4
SVT-S	46.0	68.1	50.4	41.9	65.0	45.1

Filter Characterisation

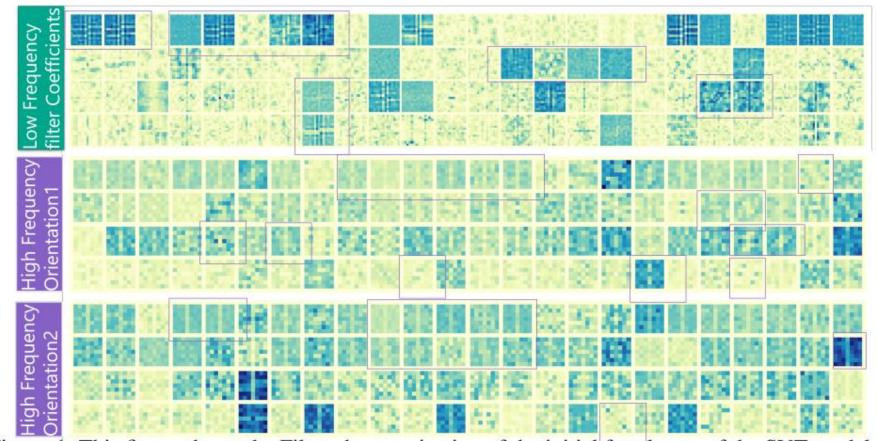


Figure 4: This figure shows the Filter characterization of the initial four layers of the SVT model. It clearly shows that High-frequency filter coefficient c captures local filter information such as lines, edges, and different orientations of an Image. The Low-frequency filter coefficient captures the shape with the maximum energy part in the image.

Business Use-Case

Business Use-Case

Extreme Classification: Fine grain Classification

Medical Imaging: X-rays, CT scans, MRI scans

Satellite imaging: Infra-red Images

Audio and Speech Applications

Signal Processing Applications

Thank You