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Large language models implicitly learn to straighten neural sentence 
trajectories to construct a predictive representation of natural language
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• Predicting upcoming events is critical for our ability to effectively interact with our environ-
ment and conspecifics.

• Transformer models in NLP, trained on next token prediction, develop versatile representa-
tions for various tasks

• However, we still lack an understanding of how a predictive objective shapes such represen-
tations.

• Drawing on vision neuroscience research (Henaff, 2019 [1]), we evaluate if autoregressive 
transformer [2] models' representations become more straight across network layers.

Methods

Curvature decreases to a greater extent in larger 
models and with more training

Models favor straight trajectories during language 
generation
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Model curvature is correlated with sentence surprisal 

• Excluding the smallest dataset model (1M tokens), models trained on larger datasets in-
creasingly reduce curvature

• (A)The hypothesis anticipates straighter model-generated sentence trajectories. 
Ground-truth sentences (blue) from UD corpus contrast with model-generated ones (red), 
derived from a three-token prompt and extended using greedy search. (B) Model-generated 
sentences show greater curvature reduction, aligning with the hypothesis.

• Surprisal: Assessed word unexpectedness to link curvature with human behavior, averaging 
3-word surprisal values per sentence[4,5].

• (A) Hypothesizes stronger correlation between curvature and surprisal in network's middle 
than early layers. (B) Middle layers show notably higher correlation than early layers, with  
(C) trained models exhibiting increasing correlation from early to middle layers, unlike un-
trained models.

Conclusions
• We propose neural trajectory straightening as a fundamental hypothesis for the mechanism 

underlying transformers models' ability to predict the next word
• Our findings fit within the efficient coding framework, suggesting that temporal prediction 

emerges as an efficient solution to the predictive objective in transformer networks.
• Exploring the universality of this mechanism in other predictive systems, both biological and 

artificial, is an area for future research.
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Sentence corpus: comprised 8,408 Universal Dependencies sentences [2], 6-19 tokens 
long, spanning diverse topics and including the top 100K English words.
Sentence Curvature: involved translating words into transition vectors (1), calculating angles 
between them (2), and averaging angles for sentence curvature (3).
Layer Curvature: Calculated curvature change from the first layer (4), averaging these 
changes across sentences (5)
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Curvature decreases across the model layers

• (A) Trained model shows consistent curvature reduction from the first layer. (B) Minimal 
changes in untrained model. (C) Trained models display gradual curvature decrease lay-
er-wise. (D) Average drop of about 8 degrees from the first layer
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Straightening generalizes across autoregressive 
models
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• Similar to the GPT2-XL model (A), models employing different training (B), input positional 
encoding (C), and RNN-based attention (D) significantly reduces layer curvature, only after 
training. 
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Model ablation reveals the role of self-attention in 
straightening 
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• Ulike autoregressive models trained on next-word prediction, bidi-
rectional models, which trained on masked language modeling, 
do not exhibit the same straightening pattern across their layers.

Model layer

• The attention head (key) weight was replaced with an identity transform in just one layer, be-
tween layer 5 (A) to and 35 (D). Ablating early layers resulted in a deficit in straightening. 
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• All models consistently reduce curvature from early to deeper layers, with larger models 
(lower perplexity) showing greater reduction.
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• Both weights in the feed-forward modules were replaced such that the resulting operation is 
an identity transform. Unlike attention-head ablation, this change does not affect the models' 
ability to straighten.
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