

Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift

Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, Xiangnan He

1.1 Background

Graph data are everywhere

- Social network
- Chemical molecule
- Biological protein

Social network

- **Graph learning tasks**
 - Node classification
 - Link prediction
 - Graph classification

1.2 Graph Out-of-distribution Issue

OOD Issue in Graph Classification

[1] Discovering Invariant Rationales for Graph Neural Networks, ICLR 2022[2] OOD-GNN: Out-of-Distribution Generalized Graph Neural Network, TKDE 2022

2.1 Assumption of Graph Generation

□ Stable (*aka. Causal, Invariant, Rationale*) Feature & Environmental Feature

Stable feature: functional group, e.g. –OH, -COOH Environmental feature: scaffold, e.g. carbon ring, carbon chain

Sufficiency & Invariance Assumption

Assumption 3.1. Given G, there exists an optimal invariant subgraph generator $\Phi^*(G)$ satisfying: a. Invariance property: $\forall e, e' \in \text{supp}(\mathcal{E}), P^e(Y|\Phi^*(G)) = P^{e'}(Y|\Phi^*(G))$. b. Sufficiency property: $Y = w^*(g^*(\Phi^*(G))) + \epsilon, \epsilon \perp G$, where $g^*(\cdot)$ denotes a representation learning function, w^* is the classifier, \perp indicates statistical independence, and ϵ is random noise.

[4] Learning Invariant Graph Representations for Out-of-Distribution Generalization, NeurIPS 2022[5] Learning Substructure Invariance for Out-of-Distribution Molecular Representations, NeurIPS 2022

3.1 Two Types of Distribution Shifts

- □ Correlation Shift v.s. Covariate Shift
 - > The joint distribution of training and test data as $P_{tr}(G, Y)$ and $P_{te}(G, Y)$

Distribution shift means that $P_{tr}(G, Y) \neq P_{te}(G, Y)$

 $P_{tr}(G, Y) = P_{tr}(Y|G) P_{tr}(G)$ $P_{te}(G, Y) = P_{te}(Y|G) P_{te}(G)$

➤ Correlation shift: $P_{tr}(G) = P_{te}(G)$ but $P_{tr}(Y|G) \neq P_{te}(Y|G)$

➤ Covariate shift: $P_{tr}(G) \neq P_{te}(G)$ but $P_{tr}(Y|G) = P_{te}(Y|G)$

Graph Data Generation

 G_{e}

 G_s ,

Our scope: these distribution shifts mainly caused by the environmental features.

[1] OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization, CVPR 2022[6] GOOD: A Graph Out-of-Distribution Benchmark, NeurIPS 2022

3.1 Two Types of Distribution Shifts

Correlation Shift v.s. Covariate Shift

e.g. Domain Generalization

[1] OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization, CVPR 2022

3.1 Two Types of Distribution Shifts

Correlation Shift v.s. Covariate Shift

3.2 Related Studies

Methods

General Generalization Algorithms

> Zhang, et al, ICLR' 18, Sagawa, et al, ICLR' 20, Arjovsky, et al, Arxiv' 19.

Limitations

Due to the irregularity of graph data, they are difficult to achieve significant performance improvements.

Graph Data Augmentation

Rong, et al, ICLR ' 2020, You, et al, NeurIPS' 2020, Han, et al, ICML' 2022.

Graph Invariant Learning

Wu, et al, ICLR ' 2022(a), Wu, et al, ICLR ' 2022(b), Li, et al, NeurIPS ' 2022, Sui, et al, KDD' 2022.

They are prone to destroy the stable features in the data, resulting in the insensitivity to stable features.

They are difficult to improve the environmental discrepancy.

3.3 How to Address Covariate Shift on Graphs?

Existing Issue: Insufficient discrepancy of environmental features

Graph Covariate Shift

$$GCS(P_{tr}, P_{te}) = \frac{1}{2} \int_{\mathcal{S}} |P_{tr}(g) - P_{te}(g)| dg$$
$$\mathcal{S} = \{g \in \mathbb{G} | P_{tr}(g) \cdot P_{te}(g) = 0\}$$

Our Idea

Using data augmentation to increase the environmental discrepancy

3.3 How to Address Covariate Shift on Graphs?

D Two Principles for Graph Augmentation

• Principle 1 (Environmental Feature Discrepancy): Environmental features should remain discrepant during augmentation

Principle 3.1 (Environmental Feature Discrepancy) Given a graph set $\{g\}$ with distribution function P, let $T(\cdot)$ denote an augmentation function that augments graphs $\{T(g)\}$ to distribution \widetilde{P} . Then $T(\cdot)$ should meet $GCS(P, \widetilde{P}) \rightarrow 1$.

• Principle 2 (Stable Feature Consistency): Stable features should remain consistent during augmentation

Principle 3.2 (Stable Feature Consistency) Given a set of graphs $\{g\}$ with a corresponding stable feature set $\{g_{sta} = (\mathbf{A}_{sta}, \mathbf{X}_{sta})\}$. Let $T(\cdot)$ denote an augmentation function that augments graphs $\{T(g)\}$ with a corresponding stable feature set $\{\widetilde{g}_{sta} = (\widetilde{\mathbf{A}}_{sta}, \widetilde{\mathbf{X}}_{sta})\}$. Then $T(\cdot)$ should meet $\mathbb{E}[\|\mathbf{A}_{sta} - \widetilde{\mathbf{A}}_{sta}\|_F^2] \rightarrow 0$ and $\mathbb{E}[\|\mathbf{X}_{sta} - \widetilde{\mathbf{X}}_{sta}\|_F^2] \rightarrow 0$, where $\|\cdot\|_F$ is the Frobenius norm.

Distributionally Robust Optimization $\min_{\theta} \left\{ \sup_{\widetilde{P}} \{ \mathbb{E}_{\widetilde{P}}[\ell(f(g), y)] : D(\widetilde{P}, P) \leq \rho \} \right\},\$

Wasserstein Distance

$$D(\widetilde{P},P) \coloneqq \inf_{\mu \in \Gamma(\widetilde{P},P)} \mathbb{E}_{\mu}[c(\widetilde{g},g)],$$

Transportation Cost

 $c(\widetilde{g},g) = \|h(\widetilde{g}) - h(g)\|_2^2.$

Lagrangian relaxation

$$\min_{\theta} \left\{ \sup_{\widetilde{P}} \left\{ \mathbb{E}_{\widetilde{P}} [\ell(f(g), y)] - \gamma D(\widetilde{P}, P) \right\} = \mathbb{E}_{P} [\phi(f(g), y)] \right\},\$$

D Robust surrogate loss: $\phi(f(g), y)$

$$\phi(f(g), y) \coloneqq \sup_{\widetilde{g} \in \mathbb{G}} \{\ell(f(\widetilde{g}), y) - \gamma c(\widetilde{g}, g)\}$$

Adversarial Augmentation

$$\nabla_{\theta} \phi(f(g), y) = \nabla_{\theta} \ell(f(\widetilde{g}^{*}), y),$$

where $\widetilde{g}^{*} = \underset{\widetilde{g} \in \mathbb{G}}{\operatorname{arg\,max}} \{ \ell(f(\widetilde{g}), y) - \gamma c(\widetilde{g}, g) \}.$

Adversarial Augmenter & Stable Feature Generator

 $T_{\theta_1}(g) = (\mathbf{A} \odot \mathbf{M}_{\mathrm{adv}}^a, \mathbf{X} \odot \mathbf{M}_{\mathrm{adv}}^x)$

 $T_{\theta_1}(g)$

Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift, NeurIPS 2023

Maximization

$$\max_{\theta_1} \left\{ \mathcal{L}_{adv} = \mathbb{E}_{P_{tr}} \left[\ell(f(T_{\theta_1}(g)), y) - \gamma c(T_{\theta_1}(g), g) \right] \right\}$$

 $T_{\theta_2}(g)$

 $T_{\theta_1}(g)$

Minimization

 $T_{\theta_1}(g)$

Mask Combination

4.1 Experiments: Main Results

Туре	Method	Motif		CMNIST	Molbbbp		Molhiv	
		base	size	color	scaffold	size	scaffold	size
General Generalization	ERM	68.66±4.25	51.74±2.88	28.60±1.87	68.10±1.68	78.29±3.76	69.58+2.51	59.94±2.37
	IRM	70.65±4.17	51.41±3.78	27.83±2.13	67.22±1.15	77.56±2.48	67.97±1.84	59.00±2.92
	GroupDRO	68.24±8.92	51.95±5.86	29.07±3.14	66.47±2.39	79.27±2.43	70.64±2.57	58.98±2.16
	VREx	71.47±6.69	52.67±5.54	28.48±2.87	68.74±1.03	78.76±2.37	70.77±2.84	58.53±2.88
Graph Generalization	DIR	62.07±8.75	52.27±4.56	33.20±6.17	66.86±2.25	76.40±4.43	68.07±2.29	58.08±2.31
	CAL	65.63±4.29	51.18±5.60	27.99±3.24	68.06±2.60	79.50±4.81	67.37±3.61	57.95+2.24
	GSAT	62.80±11.41	53.20±8.35	28.17±1.26	66.78±1.45	75.63±3.83	68.66±1.35	58.06±1.98
	OOD-GNN	61.10±7.87	52.61±4.67	26.49±2.94	66.72±1.23	79.48±4.19	70.46±1.97	60.60±3.77
	StableGNN	57.07±14.10	46.93±8.85	28.38±3.49	66.74±1.30	77.47±4.69	68.44±1.33	56.71±2.79
	CIGA	66.43±11.31	49.14±8.34	32.22+2.67	64.92±2.09	65.98±3.31	69.40±2.39	59.55±2.56
	DisC	51.08±3.08	50.39±1.15	24.99±1.78	67.12±2.11	56.59±10.09	68.07±1.75	58.76±0.91
Graph Augmentation	DropEdge	45.08±4.46	45.63±4.61	22.65±2.90	66.49±1.55	78.32±3.44	70.78±1.38	58.53±1.26
	GRÊA	56.74±9.23	54.13±10.02	29.02±3.26	69.72±1.66	77.34±3.52	67.79±2.56	60.71±2.20
	FLAG	61.12±5.39	51.66±4.14	32.30±2.69	67.69±2.36	79.26±2.26	68.45±2.30	60.59±2.95
	M-Mixup	70.08±3.82	51.48±4.91	26.47±3.45	68.75±0.34	78.92±2.43	68.88±2.63	59.03±3.11
	G-Mixup	59.66±7.03	52.81±6.73	31.85±5.82	67.44±1.62	78.55±4.16	70.01±2.52	59.34±2.43
	AIA (ours)	73.64±5.15	55.85±7.98	36.37±4.44	70.79±1.53	81.03±5.15	71.15±1.81	61.64±3.37

Table 1: Performance on synthetic and real-world datasets. Numbers in **bold** indicate the best performance, while the <u>underlined</u> numbers indicate the second best performance.

5 Conclusion

- We aim to address the covariate shift issue in graph learning, which is important yet largely unexplored.
- We introduce a novel graph augmentation method, AIA, grounded in two principles: environmental feature discrepancy and stable feature consistency.
- We conduct extensive experiments and the results demonstrate the effectiveness of our method.