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Background

▶ Modern machine learning algorithms are often formulated as
regularized M-minimization problems:

θ(λ) = argmin
θ

Ln(θ) + λp(θ) ,

where Ln(θ) denotes an empirical loss function, p(θ) denotes a
regularization function, and λ > 0 is a tuning parameter.

▶ Often θ(λ) can not be computed, and path-following algorithms are
usually used to obtain a sequence of solutions at some selected grid
points to produce an approximated solution path.

▶ There is a paucity of literature on how to choose these grid points
and how accurately one should solve the optimization problem at the
selected grid points.



ℓ2-regularized M-estimation problem

▶ We consider the solution path of an ℓ2-regularized M-estimation
problem. Our goal is to approximate the solution path

θ(t) = arg min
θ∈Rp

{
(et − 1) · Ln(θ) + (1/2) · ∥θ∥22

}
(1)

over a given interval [0, tmax) for some tmax ∈ (0,∞], where we allow
tmax = ∞.

▶ Given a set of grid points 0 < t1 < · · · < tN < ∞, and approximated
solutions {θk}Nk=1 at these grid points, we construct an approximated
solution path over [0, tmax) through linear interpolation. More
specifically, we define a piecewise linear solution path θ̃(t) as follows

θ̃(t) = tk+1−t
tk+1−tk

θk +
t−tk

tk+1−tk
θk+1 for any t ∈ [tk , tk+1], k = 0, . . . ,N − 1 ,

θ̃(t) = θN for any tN < t ≤ tmax if tN < tmax ,

where t0 = 0 and θ0 = 0.



Approximation Errors
▶ To assess how well the linear interpolation θ̃(t) approximates θ(t),

we use the function-value suboptimality of the solution paths defined
by

sup
0≤t≤tmax

{ft(θ̃(t))− ft(θ(t))} , (2)

where ft(θ) := (1− e−t)Ln(θ) + e−t(∥θ∥22/2) is a scaled version of
the objective function in (1).

▶ The global approximate errors (2) can be bounded by a set of local
approximation errors suptk≤t≤tk+1

{ft(θ̃(t))− ft(θ(t))}, where we
show that:

sup
t∈[tk ,tk+1]

{
ft(θ̃(t))− ft(θ(t))

}
≤ etk+1 max

{(
1− e−tk+1

1− e−tk

)2

∥gk∥22, ∥gk+1∥22

}
︸ ︷︷ ︸

optimization error

+ (e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk )2

,
etk∥θk+1∥22
(1− e−tk+1)2

}
︸ ︷︷ ︸

interpolation error



Approximation Errors

▶ The interpolation error is irreducible once the grid points are
chosen, while the optimization error does depend on the algorithm
and can be pushed to be arbitrarily small if we run the algorithm
long enough at each grid point.

▶ It is therefore natural to consider a stopping criterion scheme that
balances the two types of errors:

etk+1 max

{(
1− e−tk+1

1− e−tk

)2

∥∇ftk (θk)∥22, ∥∇ftk (θk+1)∥22

}
︸ ︷︷ ︸

optimization error

≲ (e−tk − e−tk+1)2 max

{
etk+1∥θk∥22
(1− e−tk )2

,
etk∥θk+1∥22
(1− e−tk+1)2

}
︸ ︷︷ ︸

interpolation error

,



A general path following algorithm

▶ Input: ϵ > 0, C0 ≤ 1/4, c1 ≥ 1, c2 > 0, 0 < αmax ≤ 5−1 and
tmax ∈ (0,∞].

▶ Output: grid points {tk}Nk=1 and an approximated solution path

θ̃(t).

▶ Initialize k = 1. Compute

α1 = min{αmax, ln(1 +

√
ϵ

∥∇Ln(0)∥2
)} .

Starting from 0, iteratively calculate θ1 by minimizing ft1(θ) until

∥∇ftk (θk)∥2 ≤ C0
(eαk − 1)

(etk − 1)
∥θk∥2 (3)

is satisfied for k = 1.



A general path following algorithm

▶ While
c2

(
1− e−max(αk , tmax−tk )

)
etk − 1

≤ ϵ or tk ≥ tmax

is not satisfied, compute

αk+1 = min

{
ln(1 +

c1(e
α1 − 1)∥∇Ln(0)∥2etk/2(1− e−tk )

∥θk∥2
), αmax, 2αk

}
,

update tk+1 = tk + αk+1. Starting from θk , iteratively compute θk+1

by minimizing ftk+1
(θ) until (3) is satisfied. Meanwhile, update

k = k + 1.

▶ Construct a solution path θ̃(t) through linear interpolation of
{θk}Nk=1.



Theoretical guarantees

Theorem 1
Suppose that Ln(θ) is differentiable and convex. For any ϵ > 0 and
tmax ∈ (0,∞], assume that either tmax < ∞ or ∥θ(tmax)∥2 < ∞. Then,
our proposed path following algorithm terminates after finite number of
iterations, and when terminated, the solution path θ̃(t) satisfies

sup
0≤t≤tmax

{ft(θ̃(t))− ft(θ(t))} ≲ ϵ .



Computational complexity

Theorem 2
Suppose that Ln(θ) is differentiable and convex. For any ϵ > 0 and
tmax ∈ (0,∞], assume that either tmax < ∞ or ∥θ(tmax)∥2 < ∞. The
total number of grid points required for our proposed path following
algorithm to achieve an ϵ-suboptimality:

sup
0≤t≤tmax

{ft(θ̃(t))− ft(θ(t))} ≲ ϵ

is at most O(ϵ−1/2).



Numerical studies
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Figure: Runtime v.s. suboptimality when applied to ridge regression (upper
panels) and ℓ2-regularized logistic regression (lower panels).



Numerical studies
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Figure: Number of iterations at each grid point for the Newton and gradient
descent methods applying to ridge regression (upper panels) and ℓ2-regularized
logistic regression (lower panels).



Future works

▶ Extension to nonconvex loss function (see Section 3 of our paper).

▶ Extension to the case where the loss function or the regularizer are
not differentiable.


