

Macro placement by wire-mask-guided black-box optimization

Yunqi Shi, Ke Xue, Lei Song, Chao Qian⁺ Email: qianc@lamda.nju.edu.cn

State Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China

Function design and verification: design the RTL and verify the functions. (Document -> RTL)
Logic synthesis: mapping the RTL design into netlist. (RTL -> Netlist)
Physical design: design the physical layout according to netlist by EDA tools. (Netlist -> GDS)
Chip manufacturing: fabricate the chip from GDS layout by photolithography. (GDS -> Product)

Learning And Mining from DatA

Macro Placement

Objectives: HPWL, congestion, density..... Constraint: non-overlapping #number of macros: thousands

Black-box, Multi-objective Hard constraint High-dimension Problems of the existing methods:

- Packing-based methods *hardly handle standard cells, low efficiency*
- Analytical placer

objective definition, overlapping

• Reinforcement placer (MaskPlace)

under-explored

Converge in less than 1 hour,

Converging curve of MaskPlace

A packing placement solution

WireMask-BBO Framework

Greedy improvement guided by wire mask

We can modify the solution without concerning the constraint of overlap.

How to optimize? Random Search / Evolutionary Algorithm / Bayesian Optimization

- RS: randomly decide the coordinate of the macros
- EA: exchange 2 randomly selected macros
- BO: optimize the coordinate of the macros directly

Comparison with state-of-the-art methods

Table 1: HPWL values ($\times 10^{5}$) obtained by ten compared methods on seven chips. Each result consists of the mean and standard deviation of five runs. The best (smallest) mean value on each chip is bolded.

acking-base	20 — D												
method	N	lethod	Туре	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue3	bigblue4 (×10 ⁷)	$+/-/\approx$	Avg. Rank	
method	SP-	-SA [33]	Packing	18.84 ± 4.62	117.36 ± 8.73	115.48 ± 7.56	120.03 ± 4.25	5.12 ± 1.43	164.70 ± 19.55	25.49 ± 2.73	0/7/0	6.86	
Analytical	NTUF	Place3 [12]	Analytical	26.62	321.17	328.44	462.93	22.85	455.53	48.38	0/7/0	9.00	
	ReP	Place [13]	Analytical	16.19 ± 2.10	153.26 ± 29.01	111.21 ± 11.69	37.64 ± 1.05	2.45 ± 0.06	119.84 ± 34.43	11.80 ± 0.73	1/6/0	5.28	Nature 2021
	DREAD	MPlace [28]	Analytical	15.81 ± 1.64	140.79 ± 26.73	121.94 ± 25.05	37.41 ± 0.87	2.44 ± 0.06	107.19 ± 29.91	12.29 ± 1.64	1/6/0	4.86	
RL -	Gra	aph [32]	RL	30.10 ± 2.98	351.71 ± 38.20	358.18 ± 13.95	151.42 ± 9.72	10.58 ± 1.29	357.48 ± 47.83	53.35 ± 4.06	0/7/0	9.00	
	Dee	pPR [15]	RL	19.91 ± 2.13	203.51 ± 6.27	347.16 ± 4.32	311.86 ± 56.74	23.33 ± 3.65	430.48 ± 12.18	68.30 ± 4.44	0/7/0	8.86	
	Mask	Place [26]	RL	6.38 ± 0.35	73.75 ± 6.35	84.44 ± 3.60	79.21 ± 0.65	2.39 ± 0.05	91.11 ± 7.83	11.07 ± 0.90	0/7/0	4.28	
Our	Wire	Mask-RS	Ours	6.13 ± 0.05	59.28 ± 1.48	60.60 ± 0.45	62.06 ± 0.22	2.19 ± 0.01	62.58 ± 2.07	8.20 ± 0.17	0/5/2	2.57	
	Wire	Mask-BO	Ours	6.07 ± 0.14	59.17 ± 3.94	61.00 ± 2.08	63.86 ± 1.01	2.14 ± 0.03	67.48 ± 6.49	8.62 ± 0.18	0/3/4	2.86	
methods	Wire	eMask-EA	Ours	5.91 ± 0.07	52.63 ± 2.23	57.75 ± 1.16	58.79 ± 1.02	2.12 ± 0.01	59.87 ± 3.40	8.28 ± 0.25	_	1.43	

WireMask-EA achieves the best average rank, and performs the best on 5 out of 7 chips.

WireMask-EA is significantly better than any previous method on at least 6 out of the 7 chips.

Comparison on wall clock time

WireMask-EA is better than two concurrent state-of-the-art methods

Fine-tune existing placement

Table 5: HPWL ($\times 10^{5}$) values obtained after fine-tuning existing placements by running WireMaskEA for 1,000 minutes.

Method	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue3	Avg. Imp.
SP-SA [33] +WireMask-EA (1000min)	$18.84 \\ 6.02 \pm 0.11$	$117.36 \\ 60.35 \pm 4.41$	115.48 57.88 ± 0.62	120.03 59.50 ± 0.92	5.12 2.21 ± 0.02	164.70 82.68 ± 18.17	53.93%
MaskPlace [26] +WireMask-EA (1000min)	$6.56 \\ 5.84 \pm 0.10$	79.98 61.43 ± 1.23	79.32 59.24 ± 2.71	75.75 60.35 ± 1.38	2.42 2.10 ± 0.01	82.61 74.93 ± 7.79	17.06%

WireMask-EA takes any existing placement as the initial solution, and further optimize it. The fine-tuning result of state-of-the-art method MaskPlace shows significant improvement.

Conclusion

- A general framework **WireMask-BBO** is proposed for solving macro placement task and can be equipped with **any BBO algorithms**.
- Experiments show the superior performance of WireMask-BBO over previous packing-based, analytical and RL-based methods.
- WireMask-BBO can be combined with any existing macro placement methods to finetune and further improve the placement result.

Limitations

- It can only deal with macro placement, leaving standard cells for analytical placers.
- The performance is limited for chips with large number of macros (e.g. bigblue4 with over 8,000 macros), due to expensive objective evaluation.

Thank you for your listening!