

GloptiNets: Scalable Non-Convex Optimization with Certificates

Gaspard Beugnot, Julien Mairal, Alessandro Rudi

What can we expect from nonconvex optimization?

Smoothness to the rescue: Smooth function can be approximated in

$$n^{-\frac{s}{d}} \ll n^{-\frac{1}{d}}$$

 $\bigcirc High norm \Longrightarrow high difficulty.$

Easy to devise **arbitrarily hard** problems.

Nonconvex
 optimization is hard,
 but smoothness
 allows to escape the
 curse of
 dimensionality

Key ingredient: kernel Sum-of-Squares (k-SoS)

 $g(x) = \phi(x)^{\mathsf{T}} G \phi(x), \qquad G \ge 0$

Analogous of linear kernel function: $f(x) = \omega^{T} \phi(x)$ Good properties:

- Positive everywhere by design
- Convex in the parameters
- Universal approximators

Dense set of inequalities ?

$$\forall x \in \mathcal{X}, \quad f(x) \ge c$$

$$\forall x \in \mathcal{X}, \quad f(x) - c = g(x),$$

$$g \in k-SoS$$

Applications Optimal Transport, Density modeling, black-box optimization, Kalman filtering...

Marteau-Ferey et al. NeurIPS 2020

General recipe for nonconvex optimization

 $f_\star = \inf_{x \in \mathcal{X}} f(x)$

			aropenteest
$f_{\star} = \sup_{c \in \mathbb{R}} c$ s.t. $\forall x \in \mathcal{X}, f(x) \ge c$	Definition		G = k-SoS model
$f_{\star} = \sup_{c \in \mathbb{R}, g \ge 0} c$ s.t. $\forall x \in \mathcal{X}, f(x) - c$	= g(x) Dense set of	equality	$\ u\ _F = \sum \hat{f}_{\omega} $
$f_{\star} = \sup_{c \in \mathbb{R}, g \ge 0} c - \ f - c - g\ _{\mathcal{L}_{\infty}(\mathcal{X})}$	Penalized version		$\omega \in \mathbb{Z}^d$
$f_{\star} \ge \sup_{c \in \mathbb{R}, g \in \mathcal{G}} c - f - c - g _{\mathcal{L}_{\infty}(\mathcal{X})}$	Strengthen constraint		
$f_{\star} \geq \sup_{c \in \mathbb{R}, g \in \mathcal{G}} c - \ f - c - g\ _{F}$	Strenthen upper bound	$\ u\ _{\mathcal{L}_{\infty}(\mathcal{X})} \le \ u\ _{F}$	

GlontiNets

Bound on the minimum is valid for *any c*, *g* !!!

Probabilistic estimate of the *F*-Norm

$$|f(x)| = \left| \sum_{\omega \in \mathbb{Z}^d} \hat{f}_{\omega} e^{2\pi i \, \omega \cdot x} \right| \le \sum_{\omega \in \mathbb{Z}^d} \left| \hat{f}_{\omega} \right| = \sum_{\omega \in \mathbb{Z}^d} \frac{\left| \hat{f}_{\omega} \right|}{\hat{\lambda}_{\omega}} \times \hat{\lambda}_{\omega} = \mathbb{E}_{\omega \sim \widehat{\lambda}} \left[\frac{\left| \hat{f}_{\omega} \right|}{\hat{\lambda}_{\omega}} \right] = \|f\|_F$$

 $\frac{|\hat{f}_{\omega}|}{\hat{\lambda}_{\omega}}$: unbiased estimate of $||f||_{F}$!! Variance?

$$\operatorname{Var}\frac{\left|\hat{f}_{\omega}\right|}{\hat{\lambda}_{\omega}} \leq \mathbb{E}_{\omega \sim \widehat{\lambda}}\left[\left(\frac{\left|\hat{f}_{\omega}\right|}{\hat{\lambda}_{\omega}}\right)^{2}\right] = \sum_{\omega \in \mathbb{Z}^{d}} \frac{\left|\hat{f}_{\omega}\right|^{2}}{\hat{\lambda}_{\omega}} = \|f\|_{\mathcal{H}_{\lambda}}^{2}$$

 \mathcal{H}_{λ} : RKHS associated with $\hat{\lambda}_{\omega}$

$$K(x,y) = \sum_{\omega \in \mathbb{Z}^d} \hat{\lambda}_{\omega} e^{2\pi i \, \omega \cdot (x-y)}$$

Unbiased estimator

- + variance
- + Chebychev bound / Median-of-Means / ...
- = Bound on *F* norm with proba 1δ

GloptiNets

Requirements \hat{f}_{ω} : Fourier¹ coeff of f $\|f\|_{\mathcal{H}_{\lambda}}$: norm of f

Input *h*: smooth function on $(-1, 1)^d$ \hat{x} : candidate δ : confidence OutputCertificate ϵ_{δ} s.t. $|h(\hat{x}) - h(x_{\star})| \leq \epsilon_{\delta}$ With proba. $1 - \delta$.

Key ideas

No *a priori* certificates; but an *a posteriori* guarantee.

Leverage the good empirical optimization of **overparametrized functions** with **GPU computations**

Solve $L(g) = c - ||f - c - g||_F \le f_*$ with g an OP k-SoS model

Experiments

No alternative we are aware of, except when *f* is a *polynomial*.

- Complexity only depends on the norm of *f*
- The **bigger** the model, the **tighter** the certificate

Certificate valid for any c, g...

So minimizing the certificate gap is a nonconvex problem...

I But you can leverage familiar OP models which are empirically very good!