ShiftAddViT: Mixture of Multiplication Primitives Towards Efficient Vision Transformer

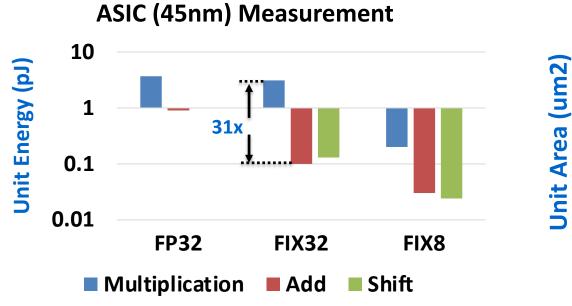
Haoran You^{*}, Huihong Shi^{*}, Yipin Guo^{*}, Yingyan (Celine) Lin

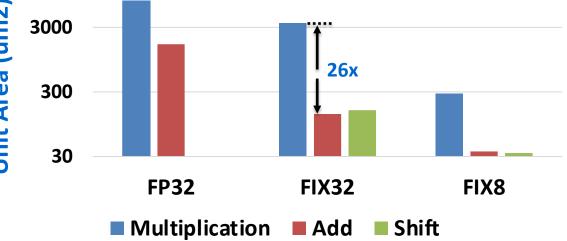
NeurIPS 2023

Georgia Institute of Technology

Efficient and Intelligent Computing Lab

- Powerful Vision Transformers (ViTs) suffer from large inference and training cost
 - Bottleneck:
 - Both attentions and MLPs are not efficient enough due to dense multiplications
 - Opportunity:
 - Multiplication can be represented by bitwise shift and add (e.g., up to 31x unit energy reduction and 26x unit area reduction over multiplication)





- Powerful Vision Transformers (ViTs) suffer from large inference and training cost
 - Motivation:
 - Reparametrize the pre-trained ViTs with mixture of multiplication primitives
 - Prior Work:

AdderNet [H. Chen, CVPR'19], DeepShift [M. Elhoushi,
CVPRW'21], Adder Attention [H. Shu, NeurIPS'22], etc

For CNNs or Transformers

ShiftAddNet										
[H.	You, NeurIPS'20]									

Dedicated for CNNs

Characteristics	Drawbacks	Characteristics	Drawbacks
Less expressive capacity	↓ Accuracy	Cascaded shift & add layers	↑ Params & latency
Training from scratch	↑ Training costs	Training from scratch	↑ Training costs
Slow training & inference speed on GPUs	↓ Practical Usage	Slow training & inference speed on GPUs	↓ Practical Usage

- Powerful Vision Transformers (ViTs) suffer from large inference and training cost
 - Motivation:
 - Reparametrize the pre-trained ViTs with mixture of multiplication primitives

ShiftAddViT The Proposed Method										
Dedicated for ViTs										
Characteristics	Advantages									
High expressive capacity	Accuracy									
Keep same number of layers	🕹 Params & latency									
Inherit pre-trained weights	Training costs									
Provide GPU optimizations	Practical Usage									

- Powerful Vision Transformers (ViTs) suffer from large inference and training cost
 - Motivation:
 - Reparametrize the pre-trained ViT with mixture of multiplication primitives
 - Associated Challenges:
 - How to effectively reparameterize ViTs with shifts and adds?
 - How to maintain the accuracy after reparameterization?

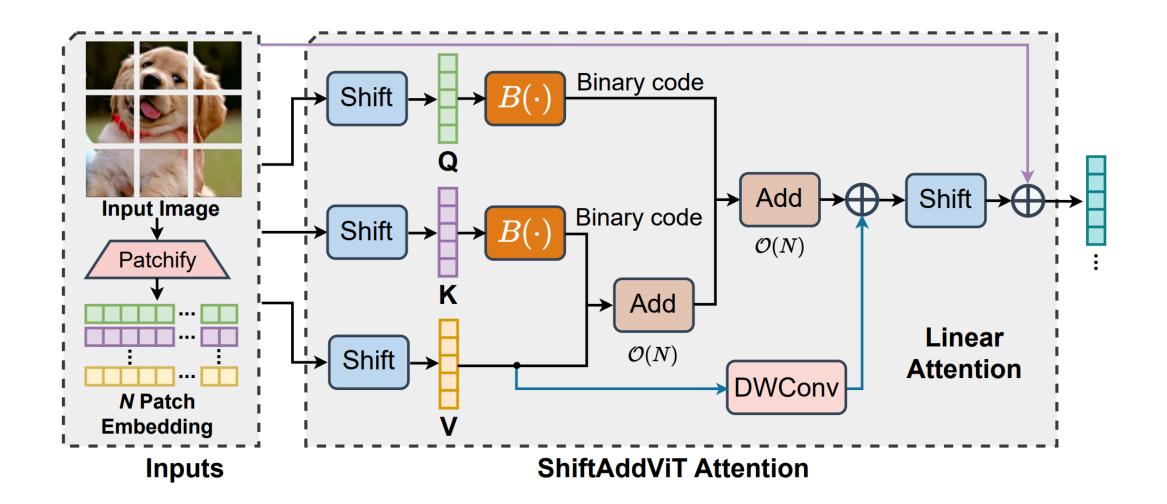
ShiftAddViT: Our Contributions

For the first time, we

- Reparameterize pre-trained ViTs with shifts and adds to deliver a new type of multiplication-reduced network, called ShiftAddViT
- Propose a new mixture of experts (MoE) framework for ShiftAddViT to preserve accuracy after reparameterization
- Introduce a latency-aware load-balancing loss term within our MoE framework to dynamically allocate input tokens to each expert
- Conduct extensive experiments on 2D and 3D vision tasks to validate the effectiveness of our proposed ShiftAddViT

Contribution 1: Reparameterization of Pre-trained ViTs

- ShiftAddViT
 - Reparameterization of Attention



Contribution 1: Reparameterization of Pre-trained ViTs

- ShiftAddViT
 - Reparameterization of Attention
 - Reparameterization of MLPs

Can we reparameterize all MLPs with Shifts?

Contribution 1: Reparameterization of Pre-trained ViTs

ShiftAddViT

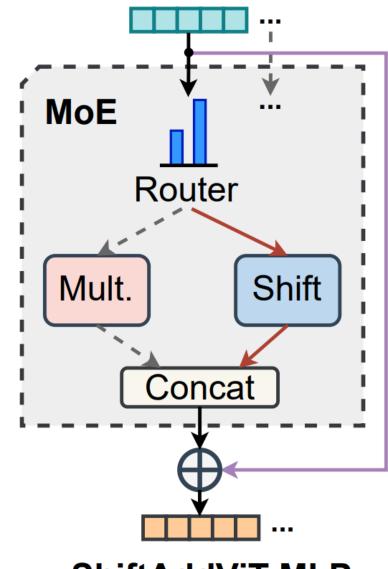
- Reparameterization of Attention
- Reparameterization of MLPs
 - Sensitivity analysis

Components	Apply	PVTv2-B0	PVTv1-T	
-	MSA	71.25	76.21	
Attention	Shift & Add	70.96	76.05	
MLPs	Shift	70.28	73.92	•••

Contribution 2: Mixture of Experts Framework

- ShiftAddViT
 - Reparameterization of Attention
 - Reparameterization of MLPs
 - Hypothesis

Sensitive tokens need higher precision Insensitive tokens can be handled by cheaper primitives



ShiftAddViT MLP

Contribution 2: Mixture of Experts Framework

- ShiftAddViT
 - Reparameterization of Attention
 - Reparameterization of MLPs
 - Sensitivity analysis

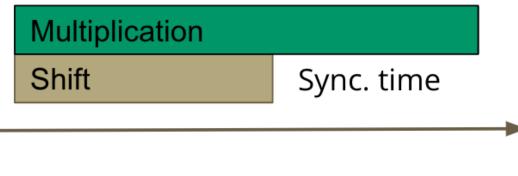
Components	Apply	PVTv2-B0	PVTv1-T	
-	MSA	71.25	76.21	
Attention	Shift & Add	70.96	76.05	
	Shift	70.28	73.92	
MLPs	MoE	70.86	74.81	

Contribution 3: Latency-aware Load-balancing Loss

ShiftAddViT

- Reparameterization of Attention
- Reparameterization of MLPs

How to reduce the synchronization time in ShiftAddViT MoE?



Runtime

Contribution 3: Latency-aware Load-balancing Loss

ShiftAddViT

- Reparameterization of Attention
- Reparameterization of MLPs
- Latency-aware Load-balancing Loss

Idea: The number of tokens assigned to experts aligns with the processing speeds of the experts

Multiplication

Shift

Runtime

Experiment Setup and Baselines

Evaluation Setup

- Tasks: 2D Image Classification and 3D Novel View Synthesis
- Datasets: ImageNet and Local Light Field Fusion (LLFF) with 8 scenes
- Models: PVTv1, PVTv2, DeiT, and GNT
- Metrics: Accuracy, Latency, and Energy

Benchmark Baselines

- 2D Transformers
 - **Ecoformer** [J. Liu et al, NeurIPS'22]
 - **PVT** [W. Wang, ICCV'21]
- 3D Transformers
 - NeRF [B. Mildenhall, ECCV'22]
 - **GNT** [M. Varma, NeurIPS'22]

ShiftAddViT: Experimental Results for 2D Tasks

Models	Methods	Acc. (%)	Latency (ms)	Energy (mJ)
	Ecoformer [34]	70.44	7.82	33.64
PVTv2-B0	ShiftAddViT	70.59	1.51	27.13
PVTv1-T	Ecoformer [34]	NaN	7.43	93.47
	ShiftAddViT	74.93	1.97	72.59
PVTv2-B1	Ecoformer [34]	78.38	8.02	106.2
	ShiftAddViT	78.49	2.49	85.34
	Ecoformer [34]	81.28	15.43	198.2
PVTv2-B2	ShiftAddViT	81.32	4.83	163.9
DeiT-T	MSA [55]	72.20	5.12	66.88
	ShiftAddViT	72.40	2.94	38.21

Made la	Linear	A	٨dd	CL .G	ME]	PVTv2-B0 [<mark>6</mark>	1]		PVTv1-T [<mark>60</mark>]
Methods	Attn	KSH	Quant.	Shift	МоЕ	Acc. (%)	Lat. (ms)	T. (img./s)	Acc. (%)	Lat. (ms)	T. (img./s)
MSA	X	X	X	X	X	70.77	4.62	989	76.21	4.73	903
PVT [61]	1	×	×	X	X	70.50	6.25	2227	75.10	5.78	1839
PVT+MoE	1	×	×	X	🖌 (MLPs)	70.82	12.46	1171	75.27	10.91	834
Ecoformer [34]	1	1	X	X	X	70.44	7.82	1348	NaN	7.43	1021
	1	X	X	X	X	71.19	6.13	2066	75.50	5.78	1640
	1	1	×	X	X	70.95	1.07^{+}	2530†	75.20	1.42^{+}	1683 [†]
ShiftAddViT	1	1	×	🖌 (Attn)	X	70.53	1.04^{+}	2447†	74.77	1.39†	1647 [†]
(with KSH [34]	1	1	X	🖌 (Attn)	🖌 (MLPs)	70.16	1.39 [†] /1.11*	N/A	74.44	1.91 [†] /1.21*	N/A
or Quant. [27]	1	1	X	X	🖌 (Both)	70.38	1.59 [†] /1.20*	N/A	74.73	2.12 [†] /1.21*	N/A
to binarize Q/K)	1	X	X	X	X	71.36	6.34	2014	75.64	5.48	1714
	1	X	1	X	X	71.04	1.00^{\dagger}	2613†	75.18	1.20^{\dagger}	1907†
	1	×	1	🖌 (Both)	X	68.57	0.97^{\dagger}	2736†	73.47	1.18^{\dagger}	1820^{+}
	1	X	1	X	🖌 (Both)	70.59	1.51 [†] /1.12*	N/A	74.93	1.97 [†] /1.02*	N/A

* denotes the modularized latency simulated by separately optimizing each expert/router with ideal parallelism.

Overall Improvement

ShiftAddViT achieves

 $1.74 \times \sim 5.18 \times$ latency reduction on GPUs and

19.4% ~ 42.9% energy savings measured on the Eyeriss accelerator with comparable or even better accuracy (\uparrow 0.04% ~ \uparrow 0.20%)

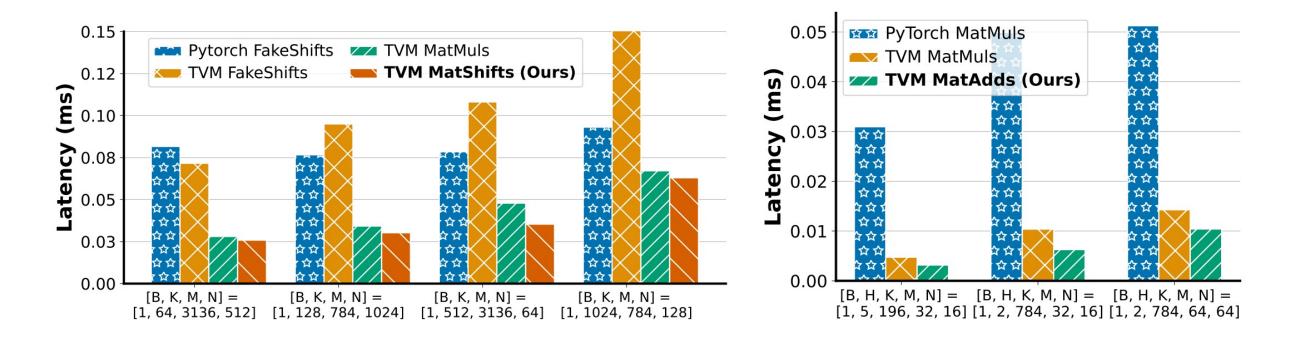
ShiftAddViT: Experimental Results for 3D Tasks

Madhada		CL:A	LLFF Averaged Orchids	LLFF Averaged			S	Flower			Lat.	Energy		
Methods	Add	Shift	MoE	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	PSNR	SSIM	LPIPS	(s)	(J)
NeRF [41]	-	-	-	26.50	0.811	0.250	20.36	0.641	0.321	27.40	0.827	0.219	683.6	1065
GNT [53]	-	-	-	27.24	0.889	0.093	20.67	0.752	0.153	27.32	0.893	0.092	1071	1849
	1	×	X	26.85	0.874	0.116	20.74	0.730	0.182	28.02	0.891	0.089	1108	1697
		✓(Both)	X	26.85	0.875	0.116	20.78	0.730	0.182	28.05	0.892	0.088	568.5	844.0
ShiftAddViT		✓(Attn)	✓(MLPs)	26.92	0.876	0.114	20.73	0.731	0.180	28.20	0.894	0.087	746.6	1093
	X	✔(Both)	×	27.05	0.881	0.107	20.84	0.746	0.169	28.14	0.896	0.083	531.2	995.6

Overall Improvement

ShiftAddViT achieves 22.3%/50.4% latency reductions and 20.8%/54.3% energy savings under comparable or even better generation quality (↑0.55/↓0.19 averaged PSNR across eight scenes), as compared to NeRF and GNT baselines

ShiftAddViT: Ablation Study



Speedups of Shifts and Adds

- Our MatAdds achieve on average 7.54×/1.51× speedups than PyTorch and TVM MatMuls, respectively
- Our MatShifts achieve on average 2.35×/3.07×/1.16× speedups than PyTorch FakeShifts, TVM FakeShifts, and TVM MatMuls, respectively

Summary

For the first time, we

- Reparameterize pre-trained ViTs with shifts and adds to deliver a new type of multiplication-reduced network, called ShiftAddViT
- Propose a new mixture of experts (MoE) framework for ShiftAddViT to preserve accuracy after reparameterization
- Conduct extensive experiments on 2D and 3D vision tasks to validate the effectiveness of our proposed ShiftAddViT

Open-source Code: <u>https://github.com/GATECH-EIC/ShiftAddViT</u>

