

Geodesic Multi-Modal Mixup for Robust Fine-Tuning

Changdae Oh^{1*} Junhyuk So^{2*} Hoyoon Byun¹ YongTaek Lim¹ Minchul Shin³ Jong-June Jeon¹ Kyungwoo Song⁴

> ¹ University of Seoul ² POSTECH ³ KAIST ⁴ Yonsei University

Great Hall & Hall B1+B2 #715, Thu 14 Dec 11:45 am – 1:45 pm

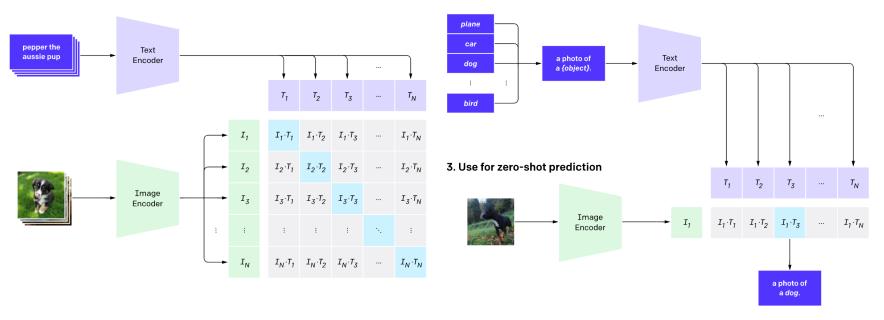
November 13, 2023

Contrastive Representation Learning

• Multi-modal Contrastive Learning

1. Contrastive pre-training

• Contrastive Language-Image Pre-training (CLIP) popularizes the large-scale visionlanguage pre-training commonly equipping contrastive loss as a part of learning objective

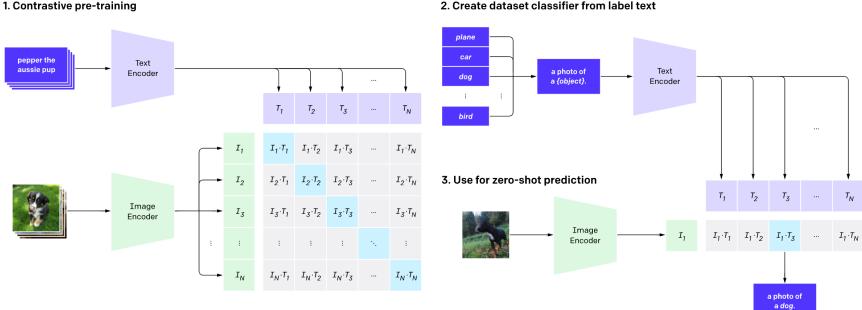


2. Create dataset classifier from label text

Contrastive Representation Learning

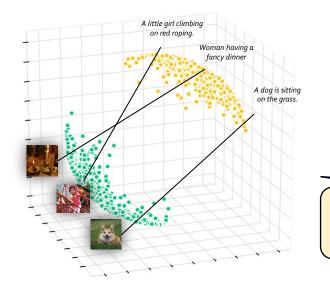
• Multi-modal Contrastive Learning

- Contrastive Language-Image Pre-training (CLIP) popularizes the large-scale visionlanguage pre-training commonly equipping contrastive loss as a part of learning objective
- Language (caption) as an alternative view of a corresponding image, and vice versa ✓ align paired embeddings from two different modalities into single joint representation space

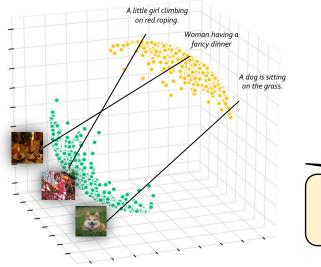


2. Create dataset classifier from label text

• Counterintuitive observation: pre-trained CLIP has separated embedding clusters

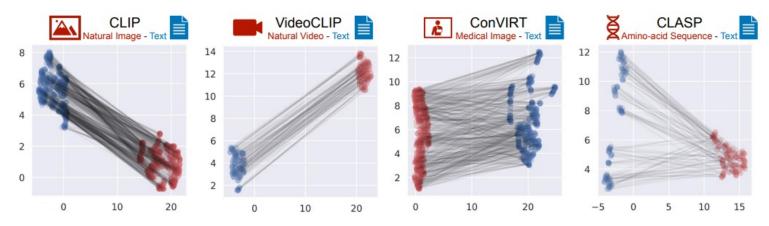


CLIP embedding visualization (DOSNES) on image-caption dataset (Flickr30k) • Counterintuitive observation: pre-trained CLIP has separated embedding clusters



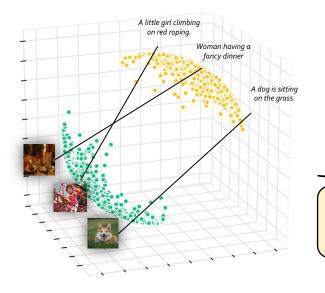
CLIP embedding visualization (DOSNES) on image-caption dataset (Flickr30k)

• Concurrent work (in terms of ArXiv preprint) made similar findings: Modality Gap



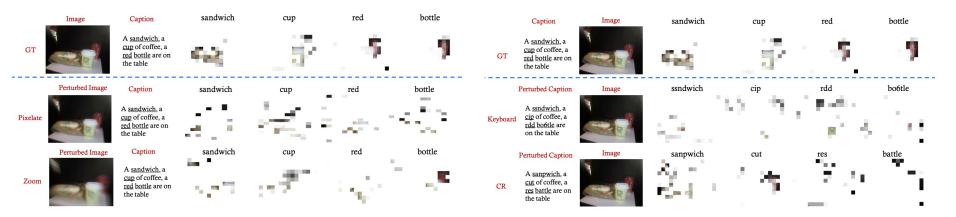
Doubly stochastic neighbor embedding on spheres, Lu et al. Pattern Recognition Letters 2019Source:Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning, Liang et al. NeurIPS 2022

• Counterintuitive observation: pre-trained CLIP has separated embedding clusters



CLIP embedding visualization (DOSNES) on image-caption dataset (Flickr30k)

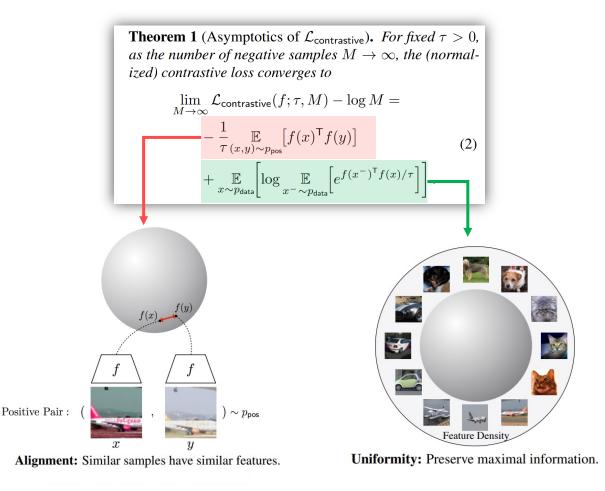
• This may be vulnerable to <u>unexpected perturbations</u> or <u>out-of-distribution samples</u>



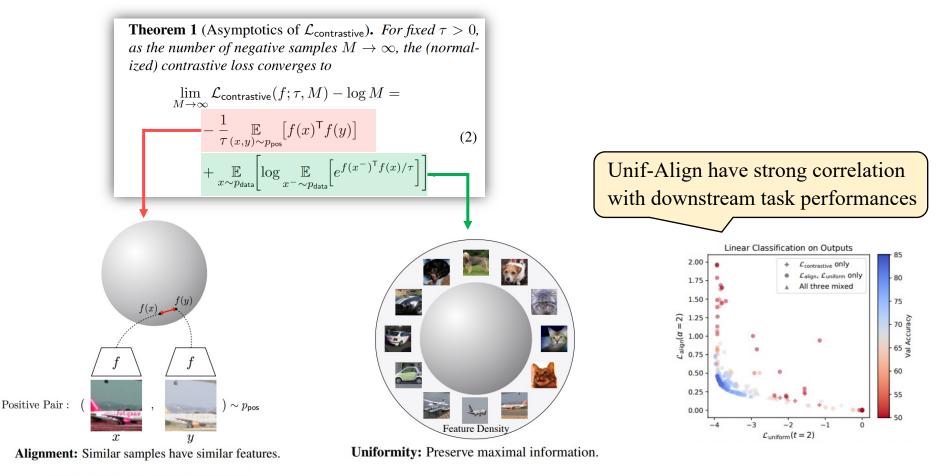
Source: Are Multimodal Models Robust to Image and Text Perturbations?, arXiv 2022

- Uniformity-Alignment (Wang & Isola 2020)
 - quantitative measurement of representation quality

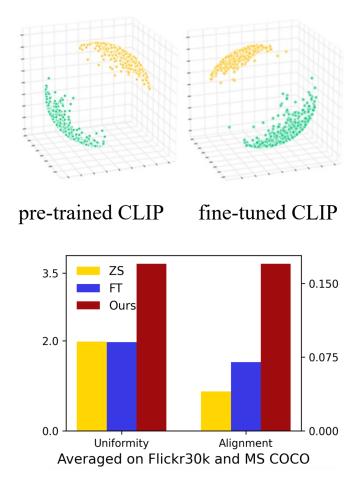
- Uniformity-Alignment (Wang & Isola 2020)
 - quantitative measurement of representation quality
 - Contrastive loss asymptotically maximizes uniformity and alignment



- Uniformity-Alignment (Wang & Isola 2020)
 - quantitative measurement of representation quality
 - Contrastive loss asymptotically maximizes uniformity and alignment



- CLIP has limited uniformity-alignment and retains its bipartite embedding structure whether being fine-tuned or not!
- This may constrict the transferability and robustness of the representation



Understanding the Fine-Tuning of CLIP

• Why does CLIP preserve its bipartite structure (so called modality gap) and fail to increase uniformity-alignment during fine-tuning?

Understanding the Fine-Tuning of CLIP

- Why does CLIP preserve its bipartite structure (so called modality gap) and poor uniformity-alignment during fine-tuning?
- Our arguments:
 - By assuming vanishing temperature τ,

Alignment := $-\mathbb{E}_{(x_i, y_i)} \left[\|f(x_i) - g(y_i)\|_2^2 - \min_{k \neq i} \|f(x_i) - g(y_k)\|_2^2 \right]$

 \mathcal{L}_{CLIP} converges to triplet loss with zero-margin same as the negative relative alignment

Understanding the Fine-Tuning of CLIP

- Why does CLIP preserve its bipartite structure (so called modality gap) and poor uniformity-alignment during fine-tuning?
- Our arguments:
 - By assuming vanishing temperature τ,

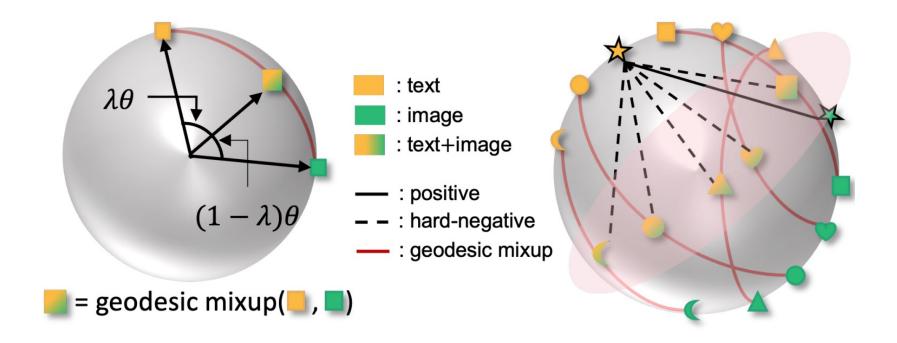
Alignment := $-\mathbb{E}_{(x_i, y_i)} \left[\|f(x_i) - g(y_i)\|_2^2 - \min_{k \neq i} \|f(x_i) - g(y_k)\|_2^2 \right]$

- $\mathcal{L}_{\text{CLIP}}$ converges to triplet loss with zero-margin same as the negative relative alignment
- Lack of hard negative samples to encourage alignment further

Robust Fine-Tuning with Geodesic Multi-Modal Mixup

• Geodesic Multi-Modal Mixup, m^2 -Mix

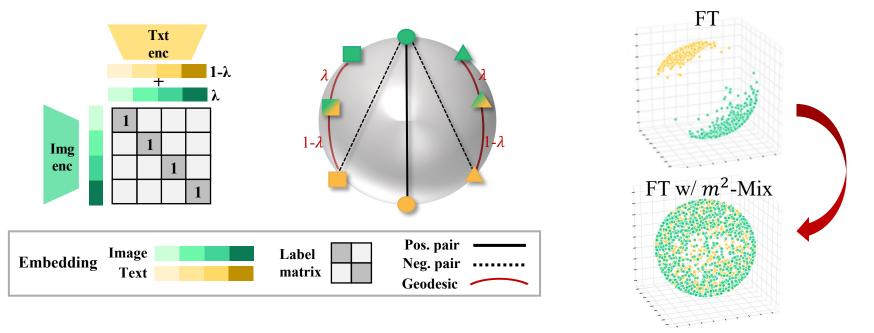
- Mixes the heterogeneous embeddings from two modalities (i.e., image and text)
- Use that mixtures as virtual hard negatives for the contrastive loss



Robust Fine-Tuning with Geodesic Multi-Modal Mixup

• Geodesic Multi-Modal Mixup, m^2 -Mix

- Mixes the heterogeneous embeddings from two modalities (i.e., image and text)
- Use that mixtures as virtual hard negatives for the contrastive loss



$$m_{\lambda}(\vec{a},\vec{b}) = \vec{a} \frac{\sin(\lambda\theta)}{\sin(\theta)} + \vec{b} \frac{\sin((1-\lambda)\theta)}{\sin(\theta)}, \text{ where } \theta = \cos^{-1}(\vec{a}\cdot\vec{b}) \text{ and } \lambda \sim \text{Beta}(\alpha,\alpha)$$

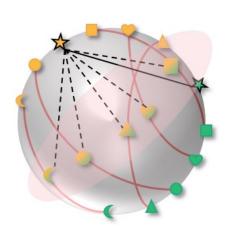
ensure that the mixture embeddings lie on the hypersphere

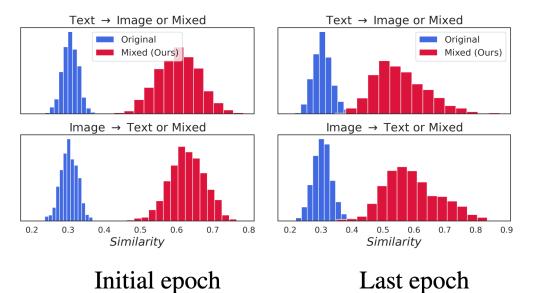
• Hard negative generation with m^2 -Mix

Theorem 4.1 (Hardness of m^2 -Mixed samples). Let's assume that two random variables x_1 and x_2 follow the $M_d(\mu_1, \kappa)$ and $M_d(\mu_2, \kappa)$, von Mises-Fisher distribution with mean direction μ_1, μ_2 and concentration parameter κ in \mathbb{R}^d , respectively. Let $\tilde{x} = x_1 + x_2$ and d = 2. Then, $D_{KL}(p(x_1)||p(\tilde{x})) \leq D_{KL}(p(x_1)||p(x_2))$ for sufficiently large κ .

• Corresponds to our intuition

(supported by empirical results)





• Contrastive Loss with m^2 -Mix converges to negative uniformity, so complements the uniformity which is lack in \mathcal{L}_{CLIP}

$$C_{m^{2}\text{-Mix}}(I,T;\theta) = \lim_{\tau \to 0^{+}} \frac{1}{M} \sum_{i=1}^{M} -\log \frac{\exp((I_{i} \cdot T_{i})/\tau)}{\sum_{j=1}^{M} \exp((I_{i} \cdot mix(I_{i},T_{j})/\tau)}$$
(3)

$$= \lim_{\tau \to 0^{+}} \frac{1}{M} \sum_{i=1}^{M} -((I_{i} \cdot T_{i})/\tau) + \log \left[\exp((I_{i} \cdot T_{i})/\tau) + \sum_{j \neq i} \exp((I_{i} \cdot mix(I_{i},T_{j}))/\tau) \right]$$

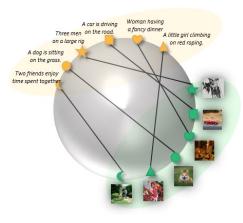
$$= \lim_{\tau \to 0^{+}} \frac{1}{M} \sum_{i=1}^{M} \log \left[1 + \sum_{j \neq i} \exp((I_{i} \cdot mix(I_{i},T_{j}) - (I_{i} \cdot T_{i}))/\tau) \right]$$

$$= \lim_{\tau \to 0^{+}} \frac{1}{M} \sum_{i=1}^{M} \log \left[1 + \sum_{j \neq i} \exp((I_{i} \cdot mix(I_{i},T_{j})/\tau) \right]$$

$$= \lim_{\tau \to 0^{+}} \frac{1}{M} \sum_{i=1}^{M} \log \sum_{j \neq i} \exp((I_{i} \cdot mix(I_{i},T_{j})/\tau)$$

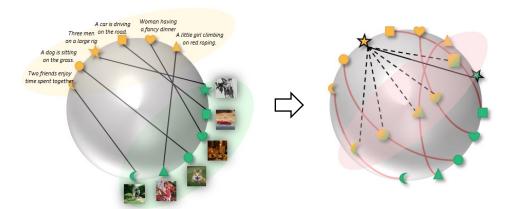
$$= \lim_{\tau \to 0^{+}} -\text{Uniformity}(I, mix(I_{i},T_{j});\theta) \qquad \text{(for sufficiently large } M)$$

• By equipping our \mathcal{L}_{m^2-Mix} with \mathcal{L}_{CLIP} , we can expect:



- By equipping our \mathcal{L}_{m^2-Mix} with \mathcal{L}_{CLIP} , we can expect:
 - Enhanced alignment through hard-negative-based contrastive learning

Theorem 4.1 (Hardness of m^2 -Mixed samples). Let's assume that two random variables x_1 and x_2 follow the $M_d(\mu_1, \kappa)$ and $M_d(\mu_2, \kappa)$, von Mises-Fisher distribution with mean direction μ_1, μ_2 and concentration parameter κ in \mathbb{R}^d , respectively. Let $\tilde{x} = x_1 + x_2$ and d = 2. Then, $D_{KL}(p(x_1)||p(\tilde{x})) \leq D_{KL}(p(x_1)||p(x_2))$ for sufficiently large κ .

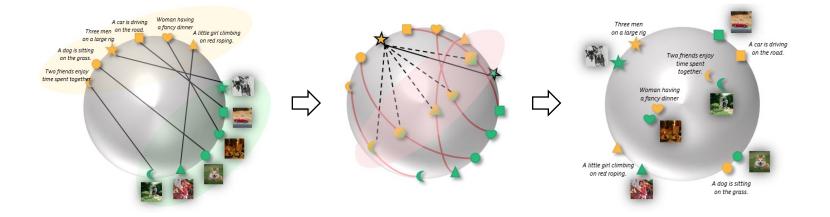


- By equipping our \mathcal{L}_{m^2-Mix} with \mathcal{L}_{CLIP} , we can expect:
 - Enhanced alignment through hard-negative-based contrastive learning

Theorem 4.1 (Hardness of m^2 -Mixed samples). Let's assume that two random variables x_1 and x_2 follow the $M_d(\mu_1, \kappa)$ and $M_d(\mu_2, \kappa)$, von Mises-Fisher distribution with mean direction μ_1, μ_2 and concentration parameter κ in \mathbb{R}^d , respectively. Let $\tilde{x} = x_1 + x_2$ and d = 2. Then, $D_{KL}(p(x_1)||p(\tilde{x})) \leq D_{KL}(p(x_1)||p(x_2))$ for sufficiently large κ .

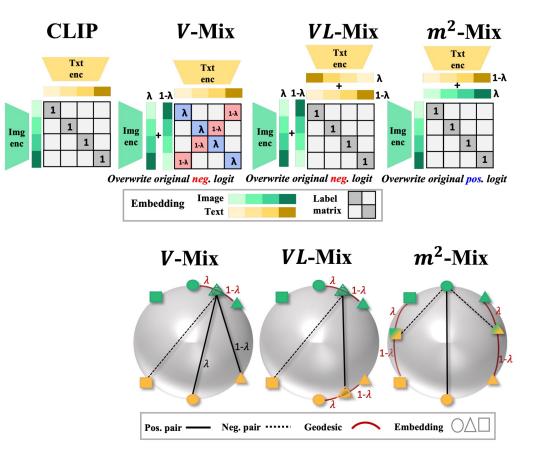
Approximately maximizing uniformity and alignment, simultaneously

Proposition 4.2 (Limiting behavior of $\mathcal{L}_{\text{CLIP}}$ with m^2 -Mix). For sufficiently large M, as the temperature of contrastive loss $\tau \to 0^+$, the $\mathcal{L}_{\text{CLIP}}$ and $\mathcal{L}_{m^2-\text{Mix}}$ converges to the triplet loss with zero-margin (i.e., corresponding to negative Alignment) and negative Uniformity, respectively. That is: $\lim_{\tau\to 0^+} \mathcal{L}_{\text{CLIP}} + \mathcal{L}_{m^2-\text{Mix}} \simeq -(\text{Alignment} + \text{Uniformity})$



Uni-Modal Mixups for Multi-Modal Contrastive Learning

• Representation learning can be further robustified with uni-modal Mixups



• Complete learning objective, m^3 -Mix (multiple multi-modal Mixup)

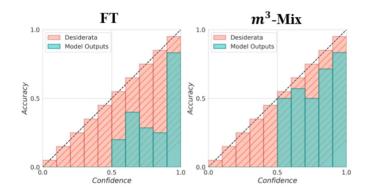
 $\mathcal{L}_{m^3-Mix} = \mathcal{L}_{CLIP} + \mathcal{L}_{m^2-Mix} + \mathcal{L}_{uni-Mix} + \mathcal{L}_{VL-Mix}$

• Cross-modal retrieval (left: CLIP, right: BERT-RN50)

	Flickr30k					MS CO	OCO				Flick	:30k	
	i-	→t	t-	→i	i→t		$t \rightarrow i$			$i \rightarrow t$		$t \rightarrow i$	
	R 1	R5	R 1	R5	R1	R5	R 1	R5		R 1	R5	R 1	R5
ZS	71.1	90.4	68.5	88.9	31.9	56.9	28.5	53.1	ZS	0.1	0.4	0.1	0.2
ES [27]	71.8	90.0	68.5	88.9	31.9	56.9	28.7	53.0	ES [27]	0.1	0.5	0.2	0.2
FT	81.2	95.4	80.7	95.8	36.7	63.6	36.9	63.9	FT	28.7	61.7	26.7	59.4
$FT (\tau = 0.05)$	82.4	95.1	82.1	95.7	40.2	68.2	41.6	69.9	$FT (\tau = 0.05)$	31.5	64.2	29.2	61.4
$\mathrm{FT}\left(\tau=0.10\right)$	75.7	93.9	78.0	92.9	34.2	62.7	36.7	64.2	$\mathrm{FT}(\tau=0.10)$	30.0	62.7	30.1	60.6
<i>i</i> -Mix [50]	72.3	91.7	69.0	91.1	34.0	63.0	34.6	62.2	<i>i</i> -Mix [50]	27.6	60.3	27.1	60.7
Un-Mix [51]	78.5	95.4	74.1	91.8	38.8	66.2	33.4	61.0	Un-Mix [51]	31.5	64.3	29.2	61.2
$\overline{m^3}$ -Mix	82.3	95.9	82.7	96.0	41.0	68.3	39.9	67.9	$\overline{m^3}$ -Mix	31.9	62.6	30.3	61.0
m^3 -Mix ($ au = 0.05$)	82.7	95.7	82.8	95.5	40.4	67.9	42.0	68.8	m^3 -Mix ($ au = 0.05$)	32.5	64.7	30.4	63.4

• Expected calibration error on retrieval recall

Metric	Task	ZS	FT	m^3 -Mix
ECE (\downarrow)	$\begin{array}{c} i \rightarrow t \\ t \rightarrow i \end{array}$	1.90 1.88	2.26 2.00	1.54 1.58



Robust representation with better uniformity-alignment contributes to enhance calibration as well as improve recall

• Few-shot adaptation (left) and zero-shot transfer (right)

Method	Pets	Da SVHN	taset CLEVR	Avg.	Method	IN	IN-V2	Dataset IN-A	IN-R	IN-S	Avg.
ZS	87.49	13.63	20.70	40.61	ZS	62.06	54.80	29.63	66.02	40.82	50.67
FT	89.37	45.00	53.49	62.62	FT	65.44	55.35	20.07	58.16	34.50	46.70
FT w/ V-Mix	89.45	44.61	53.93	62.66	FT w/ V-Mix	66.00	56.19	20.85	60.50	34.97	47.70
FT w/ L-Mix	89.43	48.42	53.91	63.92	FT w/ L-Mix	65.96	55.95	20.57	60.54	35.25	47.65
FT w/ VL-Mix	89.56	45.22	53.75	62.84	FT w/ VL-Mix	66.24	56.70	21.36	61.07	35.11	48.10
FT w/ m^2 -Mix	90.05	46.24	53.60	63.29	FT w/ m^2 -Mix	67.04	57.39	20.05	59.28	35.31	47.81
m^3 -Mix	90.16	54.84	53.85	66.28	m^3 -Mix	67.08	57.55	20.80	60.96	35.86	48.45
m^3 -Mix ($ au = 0.05$)	90.49	60.90	53.95	68.45	m^3 -Mix ($ au=0.05$)	68.40	58.51	22.17	62.28	37.62	49.80
WiSE-FT [10]	91.80	35.04	41.93	56.25	WiSE-FT [10]	69.00	59.66	28.01	64.84	41.05	52.51
WiSE-FT w/ m^3 -Mix	92.51	58.55	47.11	66.06	WiSE-FT w/ m^3 -Mix	69.65	60.71	29.16	66.75	42.19	53.69
LP-FT [11]	89.92	44.91	53.62	62.82	LP-FT [11]	68.22	58.40	25.57	63.36	38.04	50.72
LP-FT w/ m^3 -Mix	91.03	64.24	55.20	70.16	LP-FT w/ m^3 -Mix	68.62	59.17	25.85	65.14	38.78	51.51
MaPLe [64]	90.87	47.62	43.05	60.51	MaPLe [64]	65.59	58.44	32.49	68.13	42.53	53.44
MaPLe w/ m^3 -Mix	91.14	52.72	45.20	63.02	MaPLe w/ m^3 -Mix	65.76	58.16	32.52	68.20	42.67	53.46

Geodesic Mixup vs Linear Mixup

Tommenature (-)	$ m^3-M$	lix type
Temperature (τ)	linear	geodesic
0.01	48.36	48.45
0.05	48.48	49.80
0.10	45.20	46.41

- The proposed Mixups largely boost few-shot adaption and zero-shot transfer performances
- m^3 -Mix is a flexible plug-in method that provides complementary benefits to recent fine-tuning methods
- Geodesic Mixup is more favorable to contrastive learning with normalized embedding

Key Results

• Multi-modal sentiment classification under modality missing

(a) MulT

(b) GMC

(c) GMC+ m^2 -Mix

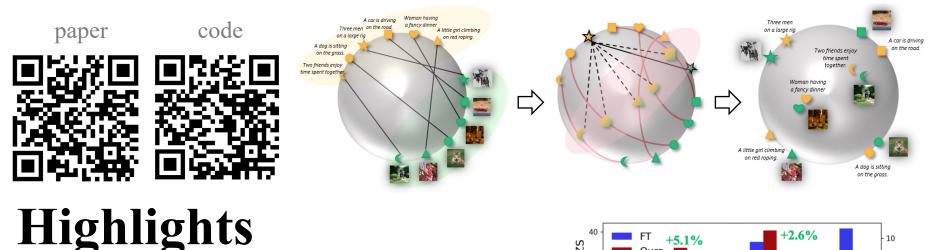
	Test-time Observed Modalities																		
	Full (T+V+A)	Т			V			А			T+V			T+A			V+A	
	acc. unif	acc.	align.	unif.															
MulT [86]	80.5 0.99	60.0	-	1.03	53.9	-	2.07	52.7	-	0.62	57.8	-	1.27	58.8	-	0.77	54.6	-	1.36
GMC [84]	80.1 3.06	78.5	0.20	3.03	64.7	0.17	3.01	66.0	0.09	3.03	77.0	0.07	2.94	77.4	0.08	3.00	67.3	0.05	2.98
$GMC+m^2-Mix$	80.5 3.18	78.9	0.23	3.17	64.2	0.19	3.15	66.2	0.12	3.15	77.8	0.08	3.08	77.9	0.09	3.08	67.4	0.06	3.10

• Image captioning with Contrastive Captioner (CoCa, Yu et al. 2022)

Method					
	BLEU@4	METEOR	ROUGE-L	CIDEr	SPICE
ZS	7.2	12.4	26.3	35.2	9.3
Cap	36.0	29.4	57.3	125.1	23.1
CL + Cap	35.7	29.3	57.1	124.9	23.0
CL w/ \mathcal{L}_{m^2-Mix} + Cap	36.3	29.5	57.5	125.6	23.2

thanks!

Great Hall & Hall B1+B2 #715, Thu 14 Dec 11:45 am – 1:45 pm



- Observation
 - CLIP has **Image-versus-text** separated embeddings with limited *uniformity-alignment*

Problem Define

- Poor uniformity-alignment may limit transferability and robustness of learned embedding
- Naïve fine-tuning can not mitigate above issue, so how can we address this?

• Our Approach

- Contrastive Learning with *Geodesic Multi-Modal Mixup*

