Maximum Independent Set: Self-Training through Dynamic Programming

Lorenzo Brusca*, Lars C.P.M. Quaedvlieg*, Stratis Skoulakis*, Grigorios G. Chrysos, Volkan Cevher

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

Thirty-seventh Conference on Neural Information Processing Systems 2023

Recap - Tackling MIS with ML & DP

- Maximum Independent Set (MIS) is an NP-hard problem in combinatorial optimization.
- Machine Learning (ML) models have shown promise in addressing NP-hard problems [1, 2, 3].
- Dynamic Programming (DP) offers an algorithmic framework by combining solutions of sub-instances.
- ▶ We explore the synergy between DP and ML to develop a learning-based algorithm for MIS.
- ▶ Our approach involves employing a Graph Neural Network (GNN) to navigate through the DP tree.

Algorithmic structure

Divide: Pick random node $v \in V$ from G, create $G/\mathcal{N}(v), G/\{v\}$ based on the theoretical assumption:

$$G_0 = G/\mathcal{N}(v), \ G_1 = G/\{v\} \qquad \to \qquad |\mathrm{MIS}(G)| = \max(|\mathrm{MIS}(G_0)|, |\mathrm{MIS}(G_1)|). \tag{1}$$

Figure: Generation of graphs G_0 , G_1 given that node $v = v_2$ has been randomly picked.

Branch: GNN model (denoted as *comparator* (CMP_{θ})) estimates the higher MIS:

$$\operatorname{CMP}_{\theta}(G_0, G_1) \simeq \mathbb{I}[|\operatorname{MIS}(G_0)| < |\operatorname{MIS}(G_1)|].$$
(2)

lions@epfl

Brusca, Quaedvlieg, Skoulakis, Chrysos, Cevher | Maximum Independent Set: Self-Training through Dynamic Programming

Self-training pipeline

Assumption

A consistent comparator corresponds to an optimal algorithm. Thus, the goal of training is to find the set of parameters $\theta^* \in \Theta$ such that for all $G_0, G_1 \in \mathcal{G}$:

$$\operatorname{CMP}_{\theta^{\star}}(G_0, G_1) = 0 \text{ if and only if } \mathbb{E}\left[\left|\mathcal{A}^{\operatorname{CMP}_{\theta^{\star}}}(G_0)\right|\right] \ge \mathbb{E}\left[\left|\mathcal{A}^{\operatorname{CMP}_{\theta^{\star}}}(G_1)\right|\right]$$

Datasamples generation process: recursion tree, roll-out, and pairing:

Figure: Generation of datasamples with recursion tree, roll-out and pairing steps

lions@epfl

Main results

Our Model Performance:

Outperforms all prior Deep-Learning-Based (DLB) methods across datasets.

Table: Test set results. A higher number corresponds to a better performance. The best results are in bold.

Method (\downarrow) Dataset ($ ightarrow$)	RB	COLLAB	TWITTER	SPECIAL
Our model	0.836	0.990	0.977	0.996
Best DLB method	0.813	0.978	0.972	0.946

• Generalizes well in out-of-distribution structures, indicating robust pattern extraction.

Open direction

How can the interplay between Dynamic Programming and self-training techniques pave the way for new deep-learning-oriented approaches for demanding Combinatorial Optimization problems?

Acknowledgements

 $\begin{array}{c} \mbox{Thank you for joining the presentation.}\\ \mbox{Looking forward to seeing you in our poster.}\\ \mbox{Great Hall & Hall B1+B2 \#634, Thu 14 Dec 10:45 a.m. } $-12:45 p.m. CST.} \end{array}$

Scan the QR code to download the paper! GitHub: https://github.com/LIONS-EPFL/dynamic-MIS.

References |

[1] Nikolaos Karalias and Andreas Loukas.

Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659–6672, 2020. (Cited on page 2.)

[2] Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe.

Run-csp: unsupervised learning of message passing networks for binary constraint satisfaction problems. *CoRR*, *abs/1909.08387*, 2019.

(Cited on page 2.)

[3] Haoyu Wang and Pan Li.

Unsupervised learning for combinatorial optimization needs meta-learning. arXiv preprint arXiv:2301.03116, 2023.

(Cited on page 2.)