Adaptive recurrent vision performs zero-shot computation scaling to unseen difficulty levels

Vijay Veerabadran*, Srinivas Ravishankar*, Yuan Tang, Ritik Raina, Virginia R. de Sa University of California San Diego

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

Spatial visual reasoning

A) Curve tracing

B) Path integration

Human vision generalizes across difficulty levels in a zero-shot manner.

Ullman, S. (1987). Visual routines. In Readings in computer vision (pp. 298-328). Morgan Kaufmann.

Increasing task difficulty

Can neural network models of visual processing show such generalization?

Datasets: PathFinder and Mazes

* Linsley, D., Kim, J., Veerabadran, V., Windolf, C., & Serre, T. (2018). Learning long-range spatial dependencies with horizontal gated recurrent units. Advances in neural information processing systems, 31.

[†] Schwarzschild, A., Borgnia, E., Gupta, A., Bansal, A., Emam, Z., Huang, F., ... & Goldstein, T. (2021). Datasets for studying generalization from easy to hard examples. arXiv preprint arXiv:2108.06011.

Datasets: PathFinder and Mazes

information processing systems, 31.

Goldstein, T. (2021). Datasets for studying generalization from easy to hard examples. arXiv preprint arXiv:2108.06011.

Segmentation labels

Models

Introducing Locally connected RNN - LocRNN

Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural computation, 10(4), 903-940.

• We introduce LocRNN, a bioinspired RNN circuit implementing long-range lateral connections in CNNs

Introducing Locally connected RNN - LocRNN

Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural computation, 10(4), 903-940.

- We introduce LocRNN, a bioinspired RNN circuit implementing long-range lateral connections in CNNs
- Computation is performed by two populations of neurons L and S with gating

Introducing Locally connected RNN - LocRNN

- We introduce LocRNN, a bioinspired RNN circuit implementing long-range lateral connections in CNNs
- Computation is performed by two populations of neurons L and S with gating
- S is an interneuron population similar to Li, Z. (Neural computation, 1998).

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983. Banino, A., Balaguer, J., & Blundell, C. (2021). Pondernet: Learning to ponder. arXiv preprint arXiv:2107.05407.

Combining ConvRNNs with Adaptive Computation Time

Prediction error

$$\mathcal{L} = \sum_{i=0}^{i=||\mathcal{D}||} rac{1}{||\mathcal{D}||} ||\mathbf{y}^i - \mathbf{\hat{y}}^i|||_2$$

Combining ConvRNNs with Adaptive Computation Time

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983. Banino, A., Balaguer, J., & Blundell, C. (2021). Pondernet: Learning to ponder. arXiv preprint arXiv:2107.05407.

- Learnable halting convolution projection computes a cumulative halting quantity p_t as a function of $\mathbf{L}_{<\mathbf{t}}$
 - If cumulative halting quantity p_t reaches/exceeds threshold η , ConvRNN halts processing

Combining ConvRNNs with Adaptive Computation Time

Prediction error

Ponder cost

$$\mathcal{L} = \sum_{i=0}^{i=||\mathcal{D}||} \frac{1}{||\mathcal{D}||} ||\mathbf{y}^i - \hat{\mathbf{y}}_{act}^i||_2 - \tau * p_{t_{halt}}^i - \mathbf{\hat{y}}_{halt}^i||_2$$

yes HALT CONTINUE

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983.

Banino, A., Balaguer, J., & Blundell, C. (2021). Pondernet: Learning to ponder. arXiv preprint arXiv:2107.05407.

Results

Evaluation on held-out images in-difficulty (easy)

Performance on Mazes-easy (used during training)

Curve tracing and path integration in LocRNN

PathFinder

Image inputs

Activations, $L_t \in [0,1]$

Mazes

Image inputs

Ground truth

Activations, $L_t \in [-1,1]$

Adaptive recurrent vision performs zero-shot computation scaling to unseen difficulty levels

- Vijay Veerabadran · Srinivas Ravishankar · Yuan Tang · Ritik Raina · Virginia de Sa Great Hall & Hall B1+B2 #412
 - vveeraba@ucsd.edu
 - Thu 14 Dec 10:45 a.m. CST 12:45 p.m. CST (NOLA time)

SOCIAL SCIENCES Social Sciences Computing Facility

