Punctuation-level Attack: Single-shot and Single Wenqiang Wang¹ **Tao Wang²** Kaihao Zhang³ **Chongyang Du**^{\perp} Wenhan Luo^{1*} Lin Ma⁴ Wei Liu⁵ Xiaochun Cao¹ **Punctuation Attack Can Fool Text Models** ¹Shenzhen Campus of Sun Yat-sen University ²Nanjing University ³Australian National University ⁴Meituan ⁵Tencent

Introduction

- Punctuation-level attacks: We first propose punctuation-level attacks, which regard the perturbations of punctuation as a systematic attack like character-level, word-level, and sentence-level attacks. We propose four primary modes of punctuation-level attacks and explain punctuation-level attacks from the perspective of optimal perturbations.
- > TPPE: We first propose the TPPE embedding method to decrease the search cost. We reduce the query time complexity from O(kn) of Insertion, O(nt) of Displacement, O(t) of Deletion, and O(kt) of Replacement, to O (1) under single punctuation attack. It can quickly and reasonably embed the adversarial candidate text xadv using a singleshot query.
- Single-shot and Single Punctuation Attack: To make our punctuationlevel attack more imperceptible, we modify only one punctuation. Besides, we discuss single-punctuation attacks in the most challenging scenario: zero query, black-box function, hard-label output, onepunctuation limitation, and single-shot attack, which is the closest to the real-world scenarios. We correspondingly propose the TPPEP method and achieve promising experimental results.

Punctuation-level Attack

- \succ Insertion: Punctuation p is inserted into the target text to fool the text model
- \blacktriangleright Displacement: Punctuation p is moved from position i to position j in the target text.
- \succ Deletion: Punctuation p is removed from the target text.
- \triangleright Replacement: Punctuation p_i is replaced by p_i in the target text.

Embedding Method

We present the pseudo code for TPPE in this paper, using the Insertion mode as an example.

Algorithm 1 TPPE Embedding Method of Insertion

Input: The input text x, the number of tokens n, the candidate punctuations p_i , the feature extraction function $f_{fe}(\boldsymbol{x})$

Output: the embedding of adversarial candidate text x_{adv} for i = 1 to n do $\boldsymbol{E}_{pos}^{i} = PE(i)$ end for for i = 1 to k do $\boldsymbol{E}_{punc}^{i}=f_{fe}(\boldsymbol{p_{i}})$ end for $\boldsymbol{E}_{text} = f_{fe}(\boldsymbol{x})$ for i = 1 to n do for j = 1 to k do $oldsymbol{E}_{oldsymbol{x}^{ij}_{adv}} = oldsymbol{E}_{text} + oldsymbol{E}_{posi} + oldsymbol{E}_{punc}$ end for end for $m{E}_{m{x}_{adv}} = \left| m{E}_{m{x}_{adv}^{11}}, m{E}_{m{x}_{adv}^{12}}, \dots, m{E}_{m{x}_{adv}^{ik}}, m{E}_{m{x}_{adv}^{21}}, \dots, m{E}_{m{x}_{adv}^{nk}}
ight|$ return $E_{x_{adv}}$

According to Alg. 1, we reduce the query time complexity from O (kn) of Insertion to O(1) by using the TPPE method.

TPPEP Training Algorithm

Algorithm 2 TPPEP Training

Input: The training data $\boldsymbol{D} = \{ (\boldsymbol{x}^1, \boldsymbol{x}_{adv}^1, y_{att}^1), (\boldsymbol{x}^2, \boldsymbol{x}_{adv}^2, y_{att}^2), \cdots, (\boldsymbol{x}^N, \boldsymbol{x}_{adv}^N, y_{att}^N) \}$. The \boldsymbol{x}^i is input text, the x_{adv}^i is adversarial candidate text, and y_{att}^i is the result of attacking (successful attacking is denoted as label 1; else denoted as label 0). The max train epoch e_{max} , the substitute model f_{sub} , the embedding model TPPE**Output:** The trained TPPEP model f_p

for i = 1 to N do $\boldsymbol{E}_{text}^i = f_{sub}(\boldsymbol{x}^i)$ $\boldsymbol{E}_{\boldsymbol{x}_{adv}}^{i} = TPPE(\boldsymbol{x}_{adv}^{i})$ The input embedding $E^{i} = concat(E^{i}_{text}, E^{i}_{x_{adv}})$ end for The embedding of training data $\boldsymbol{E}\boldsymbol{D} = \left\{ \left(\boldsymbol{E}^1, y_{att}^1 \right), \left(\boldsymbol{E}^2, y_{att}^1 \right), \cdots, \left(\boldsymbol{E}^N, y_{att}^N \right) \right\}$ for i = 1 to e_{max} do // Train f_p on **ED** to adjust the parameters θ_{f_p} $\theta_{f_p} \leftarrow \operatorname{train}(f_p, \boldsymbol{ED})$ end for $f_p = f_p(\boldsymbol{E}\boldsymbol{D};\theta_{f_p})$ return f_p

TPPEP Searching Algorithm

 \succ After training the TPPEP model f_p , we consider all candidate adversarial texts x_{adv} of input text x and calculate the embedding ED of both x_{adv} and x. We then apply the TPPEP method to ED and calculate the score of the successful attack. The adversarial candidate text with the highest paraphrasing score calculated by the TPPEP method is chosen to deploy the attack.

Experimental Results

2

The results of Text classification task, paraphrase task, and natural language inference task.

Cola	ELECTRA 7 XLMR 37										
mode	Top-1	Top-3	Top-5	Traversal	p_1	Top-1	Top-3	Top-5	Traversal	p_1	ASP
Insertion	67.40%	73.06%	73.83%	90.80%	74.23%	28.76%	52.64%	63.57%	93.67%	30.70%	362.62
Displacement	36.05%	66.35%	73.44%	80.44%	44.82%	43.05%	60.12%	76.03%	80.73%	53.33%	11.59
Deletion	5.18%	5.85%	5.94%	5.94%	87.21%	4.89%	5.85%	5.85%	5.85%	83.59%	1.15
Replacement	24.64%	36.82%	44.77%	74.59%	33.03%	6.62%	9.88%	12.37%	20.23%	32.72%	41.49
QQP	DistilBERT1 36					DistilBERT2 36					~
Insertion	14.72%	18.76%	22.68%	47.18%	31.20%	8.67%	10.43%	11.73%	48.23%	17.98%	957.72
Displacement	8.52%	15.05%	18.86%	26.78%	31.81%	7.21%	12.43%	15.57%	23.44%	30.76%	36.57
Deletion	3.94%	5.93%	6.02%	6.03%	65.34%	5.06%	6.86%	6.95%	6.96%	72.70%	2.53
Replacement	7.59%	10.04%	12.18%	19.70%	38.53%	16.70%	20.97%	22.65%	29.65%	56.32%	90.91
Wanli	RoBERTa 27 DeBERT				DeBERTa [14					
Insertion	8.44%	19.22%	26.20%	66.74%	12.65%	15.28%	29.20%	37.40%	80.14%	19.07%	1161.12
Displacement	5.12%	9.14%	12.26%	26.14%	19.59%	10.28%	16.60%	20.34%	38.40%	26.77%	53.94
Deletion	3.22%	5.84%	6.14%	6.16%	52.27%	5.74%	8.58%	8.96%	8.98%	63.92%	2.94
Replacement	8.48%	15.96%	19.80%	45.82%	18.51%	6.92%	13.08%	16.88%	54.76%	12.64%	105.88

 \succ The results of the semantic-similarity-scoring task

	Senten	ce-BERT	Distilbert		
STS12	Pearson	Spearman	Pearson	Spearman	
Without Attack	0.7990	0.6988	0.8056	0.7257	
TOP-1	0.7874	0.6862	0.7902	0.7035	
TOP-3	0.7760	0.6738	0.7759	0.6990	
TOP-5	0.7654	0.6626	0.7649	0.6745	
Traversal	0.6992	0.5832	0.6994	0.6048	

\succ The results of text to image and summarization task

Task	Metric	Without Attack	TOP-1	TOP-3	TOP-5	Traversal
Text to image	CLIP score	0.3278	0.3176	0.3069	0.3022	0.2610
Summarization	ROUGE-1	11.69	10.91	9.65	9.11	5.22

Ori-text: a professional photograph of an astronaut riding a triceratops Adv-text: a professional photograph of an astronaut. riding a triceratops

Ori-text: a corgi is playing piano, oil on canvas Adv-text: a corgi is playing, piano, oil on canvas

dataset	pokemon-blip-captions							
	all	train	test		Ori-image	Adv-image	Ori-text	Adv-text
Ori-text	0.3273	0.3272	0.3278	Ori-text0	0.3281	0.2484	1	0.9782
Adv-text	0.2591	0.2586	0.2610	Ori-text1	0.4040	0.3468	1	0.9843