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Abstract

As more and more decisions that have a significant ethical dimension are being
outsourced to AI systems, it is important to have a definition of moral responsibility
that can be applied to AI systems. Moral responsibility for an outcome of an
agent who performs some action is commonly taken to involve both a causal
condition and an epistemic condition: the action should cause the outcome, and
the agent should have been aware – in some form or other – of the possible moral
consequences of their action. This paper presents a formal definition of both
conditions within the framework of causal models. I compare my approach to the
existing approaches of Braham and van Hees (BvH) and of Halpern and Kleiman-
Weiner (HK). I then generalize my definition into a degree of responsibility.

1 Introduction

As more and more decisions that have a significant ethical dimension are being outsourced to AI
systems, it is important to have a definition of responsibility that can be applied to the decisions of
AI systems, and that can be used by AI systems in the process of its decision-making [8]. To meet the
first condition, such a definition should require only a minimal notion of agency and instead focus on
those aspects of responsibility that are readily applicable to (current) AI systems. To meet the second
condition, such a definition should be formulated in a language that can be implemented into an AI
system, so that it can integrate judgments of responsibility into its decision-making. This paper sets
out to propose such a definition using the well-established framework of causal models [22, 23].

There exist different notions of moral responsibility that one might be interested in, and here we restrict
attention to just one of them, namely responsibility for consequences, meaning the responsibility
one has for a particular outcome that is the result of performing a particular action. This can be
expressed more clearly by saying that the action caused the outcome, and therefore the first condition
of concern here is the causal condition on responsibility [12, 26, 21, 5]. The past two decades have
seen immense progress on offering formal definitions of actual causation by way of using causal
models, and the definition here developed takes maximal advantage of this progress by comparing
some recent proposals and choosing the one that correctly handles several complicated cases to be
considered [33, 16, 2].

Our actions can cause all kinds of outcomes for which we are clearly not morally responsible: if a
train crashes into a car that illegally crosses the railroad then the train conductor is not responsible for
the car driver’s death, if you turn on a light switch in a hotel room then you are not responsible if a
short-circuit follows, etc.. The standard intuition that we have in such cases is that the agent “could
not have known” that their action would cause the outcome. This is why definitions of responsibility
also invoke an epistemic condition, stating roughly that the agent should have been able to foresee
that they are performing an action which could result in them being responsible for the outcome
[5, 27, 25].
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In addition to the causal and the epistemic conditions, it is standard to demand that responsibility
also requires the fulfilment of a control condition (sometimes also called freedom condition), which
expresses the fact that the agent had the right sort of control whilst performing their action [25].
Due to its close connection to issues of free will and determinism, this condition is heavily debated
within philosophy. Within the context of (current) AI systems, however, the control condition can
take on a more mundane form: any action that was a result of the correct operation of its program
can be viewed as being under the AI’s control. Therefore I simply take there to be a specific action
variable that ranges over a set of possible actions, and assume that whenever the AI system is running
successfully it has control over the value that this variable takes.

My approach proceeds along the same lines as that of Braham and van Hees (BvH) [5]. They offer
the most influential formalization of moral responsibility that incorporates both the causal and the
epistemic conditions, and therefore their work forms an appropriate point of comparison. Although I
agree with the spirit of their approach, I disagree with its formulation. First, their causal condition
defines causation as being a Necessary Element of a Sufficient Set (NESS). However, their use of
game-theory instead of causal models results in an overly simplistic view of NESS-causation that
cannot handle indirect causation. Therefore I first formulate their definition using causal models,
and then show how to modify it so that it can overcome this limitation. Second, I disagree with
the particulars of both their causal and their epistemic conditions. I argue for replacing the NESS
definition of causation with my recently developed Counterfactual NESS (CNESS) definition [2].
Their epistemic condition states that the agent should minimize the probability of causation. I argue
for giving that condition a secondary role: minimizing the probability of causing the outcome is
subservient to minimizing the probability of the outcome simpliciter. I analyze several examples to
illustrate the superiority of my conditions.

More recently, Halpern & Kleiman-Weiner (HK) [17] used causal models to propose definitions of
several concepts that are closely related to moral responsibility. Although they do not explicitly define
moral responsibility, they do suggest using the modified Halpern & Pearl (HP) definition of causation
for the causal condition [16]. The HP definition correctly handles most of the counterexamples to the
NESS definition here presented, but I discuss two types of example for which it fails (whereas the
CNESS definition does not). HK also offer a definition of “degree of blameworthiness” that for all
intents and purposes is very similar to an epistemic condition: it measures the extent to which the
agent minimized the probability of the outcome. I present a case in which the epistemic conditions
of BvH and HK conflict in order to argue that a more elaborate epistemic condition is required. My
epistemic condition combines that of HK with that of BvH by demanding that an agent minimizes
the probability of the outcome, but if possible also minimizes the probability of causation. 1

Here is the general schema that encompasses all definitions of responsibility that I aim to consider.
Responsibility Schema. An agent who performs A = a is responsible for outcome O = o if:

• (Control Condition) The agent had control over A = a.
• (Causal Condition) A = a causes O = o.
• (Epistemic Condition) The agent believes that they could have avoided being responsible

for O = o by performing some alternative action A = a′.

As mentioned, I simply assume that the Control Condition is always met (as do BvH, who call it
the Agency Condition). For sake of brevity, I leave it implicit from now on.

Formalizing the Causal Condition comes down to settling the discussion on how to formalize actual
causation, which has received considerable attention over the past two decades [22, 31, 15, 30, 16, 1].
A full discussion of causation would be too ambitious for the present purposes. Instead, I evaluate
the suitability of several definitions of causation within the context of responsibility by presenting
examples that bring across how they differ. On the basis of this evaluation I suggest adopting the
CNESS definition and refer the reader to [2] for a more general motivation.

The Epistemic Condition requires settling the question: what does it take for the agent to believe
that performing A = a′ allows them to avoid responsibility? Since this condition uses the notion of

1Note that the epistemic conditions of HK and BvH are not necessarily inconsistent: if one simply defines
causation as an increase in the probability of the outcome occurring, they become equivalent. Except for the
fact that he uses objective probabilities rather than those of the agent, this is roughly the proposal defended in
[29]. As exemplified by the examples to be discussed (and as exemplified by browsing the recent literature on
causation) such a naive probabilistic approach to causation is unable to deliver sensible verdicts.
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responsibility, our Schema is circular. There exist different ways of filling it in so that it no longer is
circular, and it is this flexibility that makes filling in the condition interesting. One possible suggestion
is to demand that the agent believed A = a′ would not result in the outcome O = o, another weaker
suggestion is to demand that the agent believed A = a′ would not cause O = o, etc..

A note of clarification is in order before we proceed. The current work does not aim to offer a
complete theory of moral responsibility for AI systems, but rather zooms in on the above conditions
whilst ignoring certain others. Concretely, here are some important issues that I set aside in this paper.

1.1 Some Limitations and Related Work

There exist forms of moral responsibility that do not (always) involve causation, such as those that
follow from certain societal norms and expectations. For example, a captain is responsible for
everything that happens on their ship, a parent is responsible for the behavior of their child, etc.. More
generally, assigning responsibility to AI systems should itself be seen as just one part of the wider
discussion on accountability that arises from the introduction of such systems into our society [19, 7].

Relatedly, responsibility is often associated with the morally stronger notions of blame and praise. I
take responsibility to be a weaker notion that necessarily precedes judgments of blame and praise: one
cannot be blameworthy for an outcome unless one is responsible for it, and similarly for praise. To
develop definitions of blame and praise requires bringing into view both the absolute moral valence
of the outcome O = o (was it good or bad?) and its relative valence (was it better/worse than an
alternative which it prevented?), as well as the costs incurred by the agent when performing an action.
As the vast literature on trolley cases and other moral dilemmas illustrates, these issues make matters
significantly more complex [10, 20].

One condition in particular that seems highly relevant to assigning blame (resp. praise) is to consider
whether the outcome caused by the agent is harmful (resp. beneficial) or not. Indeed, one natural
way of implementing a formal definition of responsibility within AI systems is to demand that it
tries to avoid becoming responsible for harmful outcomes. This is confirmed by the recent European
AI Act, which categorizes the risk that an AI system poses based on how likely it is to cause harm
[11]. Beckers et. al. recently proposed a causal analysis of harm that is also formalized using causal
models, and thus it could easily be integrated into the present proposal [3, 4].2 In the present paper,
however, I choose to focus exclusively on defining responsibility, thereby paving the way for future
definitions of blame and praise.

Duijf presents a formalization of moral responsibility for outcomes that is likewise inspired by, but
not an endorsement of, BvH [9]. Rather than defending an alternative definition of responsibility
as I do, he presents a broad lanscape of completely formal conditions for responsibility that one
might consider and analyzes their logical relations. As with BvH, his definition of NESS causation is
formulated using game-theory, and thus it is likewise restricted to applications of direct causation.

The next section introduces the formalism of causal models that will be used to express all candidate
definitions and related notions. Section 3 presents the BvH and HK definitions of responsibility and
their respective definitions of causation. Section 4 discusses the Causal Condition by introducing
two more definitions of causation and offers some examples to argue in favor of adopting the CNESS
definition. (Some further examples are offered in the appendix.) We move on to a discussion of
the Epistemic Condition in Section 5, which leads the way to my definition of moral responsibility.
Since responsibility is often taken to come in degrees, in Section 6 I define the degree of responsibility
and sketch how it helps interpret recent empirical work in psychology on responsibility judgments.

2 Causal Models

This section reviews the definition of causal models as understood in the structural modeling tradition
started by Pearl [22], where I use the notation from Halpern [16].

Definition 1. A signature S is a tuple (U ,V,R), where U is a set of exogenous variables, V is a set
of endogenous variables, andR a function that associates with every variable Y ∈ U ∪V a nonempty

2I should note that they use the HP-definition of causation, which I criticize below. However, they state
explicitly that their approach applies just as well to other definitions of causation.
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setR(Y ) of possible values for Y (i.e., the set of values over which Y ranges). If X⃗ = (X1, . . . ,Xn),
R(X⃗) denotes the crossproductR(X1) ×⋯ ×R(Xn).

Exogenous variables represent unobserved factors whose causal origins are outside the scope of the
causal model, such as background conditions and noise. The values of the endogenous variables, on
the other hand, are causally determined by other variables within the model.

Definition 2. A causal model M is a pair (S,F), where S is a signature and F defines a function
that associates with each endogenous variable Y a structural equation FY giving the value of Y
in terms of the values of other endogenous and exogenous variables. Formally, the equation FY

mapsR(U ∪ V − {Y }) toR(Y ), so FY determines the value of Y , given the values of all the other
variables in U ∪ V .

We usually write the equation for an endogenous variable as Y = f(X⃗), where X⃗ are called the
parents of Y (and Y is called a child of each variable in X⃗), and the function f is such that it only
depends on the values of X⃗ . The ancestor relation is the transitive closure of the parent relation. In
this paper we restrict attention to acyclic models, that is, models where no variable is an ancestor of
itself. A (directed) path is a sequence of variables in which each element is a child of the previous
element.In this manner an acyclic causal model induces a unique DAG, i.e., a Directed Acyclic Graph,
which is simply a graphical representation of all the ancestral relations.

An intervention has the form X⃗ ← x⃗, where X⃗ is a set of endogenous variables. Intuitively, this
means that the values of the variables in X⃗ are set to the values x⃗. The equations define what happens
in the presence of interventions. The intervention X⃗ ← x⃗ in a causal model M = (S,F) results in a
new causal model, denoted MX⃗←x⃗, which is identical to M , except that F is replaced by F X⃗←x⃗: for
each variable Y ∉ X⃗ , F X⃗←x⃗

Y = FY (i.e., the equation for Y is unchanged), while for each X ′ in X⃗ ,
the equation FX′ for X ′ is replaced by X ′ = x′ (where x′ is the value in x⃗ corresponding to X ′).

Given a signature S = (U ,V,R), an atomic formula is a formula of the form X = x, for X ∈ V and
x ∈R(X). A causal formula (over S) is one of the form [Y1 ← y1, . . . , Yk ← yk]φ, where

• φ is a Boolean combination of atomic formulas,
• Y1, . . . , Yk are distinct variables in V , and
• yi ∈R(Yi) for each 1 ≤ i ≤ k.

Such a formula is abbreviated as [Y⃗ ← y⃗]φ. The special case where k = 0 is abbreviated as φ.
Intuitively, [Y1 ← y1, . . . , Yk ← yk]φ says that φ would hold if Yi were set to yi, for i = 1, . . . , k.

We call a setting u⃗ ∈ R(U) of values of exogenous variables a context. A causal formula ψ is
true or false in a causal setting, which is a causal model given a context. As usual, we write
(M, u⃗) ⊧ ψ if the causal formula ψ is true in the causal setting (M, u⃗). The ⊧ relation is defined
inductively. (M, u⃗) ⊧X = x if the variable X has value x in the unique (since we are dealing with
recursive models) solution to the equations in M in context u⃗ (i.e., the unique vector of values that
simultaneously satisfies all equations in M with the variables in U set to u⃗). The truth of conjunctions
and negations is defined in the standard way. Finally, (M, u⃗) ⊧ [Y⃗ ← y⃗]φ if (MY⃗←y⃗, u⃗) ⊧ φ.

In addition to the causal setting (M, u⃗) that describes both the objective causal relations and their
actual realization, we also need to represent the agent’s beliefs regarding what could possibly happen
in order to fill in the Epistemic Condition. I do so in the same manner as proposed by HK: we take
Pr to be a probability distribution over a set of causal settings K, so that Pr expresses the agent’s
subjective probabilities before the agent performs their action. As do HK, I assume for simplicity
that all the causal models appearing in K have the same signature (i.e., the same exogenous and
endogenous variables). We define an epistemic state of an agent to consist of a pair E = (Pr,K), and
define a responsibility setting (M, u⃗,E) as the combination of a causal setting and an epistemic state.

3 The BvH and HK Definitions

BvH [5] work within a game-theoretic framework and do not use causal models, so in order to
compare their approach to mine we need to first translate it into the language of causal models. I do
not delve into the details but rather offer a rough sketch of such a translation.
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Similar to causal models, BvH represent the agents’ influence on the outcome O by way of a function.
Yet instead of letting some endogenous variables A⃗ represent the actions of agents directly, they use
variables to represent the strategies that each agent can adopt to guide their actions. Aside from
that, the main difference between the two formalisms is that theirs is unable to represent indirect
causal relations. 3 In general, the equations of a causal model allow for an unlimited number of
intermediate ancestors between variables A⃗ and an outcome variable O, so that causal influence
from an agent’s action can be passed on along intermediate variables to the outcome variable. BvH’s
outcome function on the other hand abstracts away from any mediated form of causal influence,
so that the strategies causally determine the outcome directly. As a result, their games are to be
interpreted as a single-equation causal model of the form O = fO(A⃗). (Since the variablesA⃗ are
determined directly by the context u⃗, I adopt the standard practice of leaving their equations implicit.)

BvH use the famous NESS definition of causation that was proposed by Wright [32, 33] – and also
formed the inspiration for the Halpern & Pearl (HP) definitions [22, 15, 16] – which states that causes
are Necessary Elements of a Sufficient Set for the effect. Taking into account the previous remarks, it
is more accurate to speak of the direct NESS definition. I here present my recent formalization of
both the direct and the indirect NESS definitions using causal models [2]. First we need to define
causal sufficiency. As do BvH, I take it to mean that a set guarantees the effect regardless of the
values of the variables outside of the set.
Definition 3 (Sufficiency). We say that X⃗ = x⃗ is sufficient for Y = y w.r.t. (M, u⃗) if Y /∈ X⃗ and for
all values z⃗ ∈R(Z⃗) where Z⃗ = V − (X⃗ ∪ {Y }), it holds that (M, u⃗) ⊧ [X⃗ ← x⃗, Z⃗ ← z⃗]Y = y.

Direct NESS-causation is then defined by stating that:

• the candidate cause and the effect actually occurred;
• the candidate cause is a member of a sufficient set;
• and it is necessary for the set to be sufficient.

Definition 4 (Direct NESS). X = x directly NESS-causes Y = y w.r.t. (M, u⃗) if there exists a
W⃗ = w⃗ so that the following conditions hold:

DN1. (M, u⃗) ⊧X = x ∧ W⃗ = w⃗ ∧ Y = y.

DN2. X = x ∧ W⃗ = w⃗ is sufficient for Y = y w.r.t. (M, u⃗).

DN3. W⃗ = w⃗ is not sufficient for Y = y w.r.t. (M, u⃗).

We can now formulate the counterpart of the BvH definition using causal models by filling in their
conditions into our Responsibility Schema.
Definition 5 (BvH Responsibility). An agent who performs A = a is responsible for outcome O = o
w.r.t. a responsibility setting (M, u⃗,E) if:

• (Causal Condition) A = a directly NESS-causes O = o w.r.t. (M, u⃗).
• (Epistemic Condition) There exists a′ ∈R(A) so that Pr(A = a directly NESS-causes O =

o) > Pr(A = a′ directly NESS-causes O = o).4

Informally, the BvH definition of responsibility requires that an agent’s action directly NESS-caused
the outcome, and that the agent believes they failed to minimize the probability of their action causing
the outcome. The following example (taken from BvH) illustrates their definition.
Example 1. Two assassins (Assassin1 and Assassin2), in place as snipers, shoot and kill Victim,
with each of the bullets fatally piercing Victim’s heart at exactly the same moment. Although neither
of them could have prevented the outcome, each of them is clearly responsible for Victim’s death.

Let V stand for Victim’s death (V = 1) or survival (V = 0), and let A1,A2 stand for the actions of the
two assassins, where Ai = 1 if and only if Assassini shoots. We can then capture this example with
the single equation V = A1 ∨A2, and a context u⃗ such that A1 = 1 and A2 = 1.

3As I said, this is a rough sketch. Technically, one should distinguish between games in normal form, which
is the form considered by BvH, and games in extensive form, from which the normal form games have been
derived. Games in extensive form do allow for indirect relations, and thus there might be a way of representing
indirect causal relations in game theory after all.

4Of course these probabilities have to be read as being conditioned on the corresponding action, i.e., as “the
agent’s probability that the action would cause the outcome if it were performed”.
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Does the BvH definition (Definition 5) succeed in establishing that each of the assassins is responsible
for Victim’s death? To find out, we first need to evaluate whether A1 = 1 (resp. A2 = 1) directly
NESS-causes V = 1 (Def. 4). We can choose W⃗ = ∅ to get the desired result, as follows.

AC1 is fulfilled because A1 = 1 and V = 1 actually happened. AC2 is established by verifying that
the following two claims hold: (M, u⃗) ⊧ [A1 ← 1,A2 ← 1]V = 1 and (M, u⃗) ⊧ [A1 ← 1,A2 ←

0]V = 1. Since W⃗ = ∅, verifying AC3 is easy: we need to find a single intervention on the variables
other than V such that they result in V = 0. The intervention [A1 ← 0,A2 ← 0] does the job.

To evaluate the Epistemic Condition requires making some assumptions about the assassins’s
probability attributions. It sounds reasonable to assume that, without evidence to the contrary, each
assassin attributed a higher probability to them shooting causing the outcome than them not shooting
causing the outcome. Therefore the Epistemic Condition is also fulfilled for each assassin, and thus
the BvH definition arrives at the right verdict for this example.

We continue with the approach pursued by Halpern Kleiman-Weiner (HK) [17], which uses the
modified Halpern & Pearl definition of causation [16]:

Definition 6 (HP). X⃗ = x⃗HP-causes Y = y w.r.t. (M, u⃗) if there exists a W⃗ = w⃗ so that the following
conditions hold:

AC1. (M, u⃗) ⊧ X⃗ = x⃗ ∧ W⃗ = w⃗ ∧ Y = y.

AC2. There is a setting x⃗′ such that (M, u⃗) ⊧ [X⃗ ← x⃗′, W⃗ ← w⃗]Y ≠ y.

AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′′ satisfies AC2, where x⃗′′ is
the restriction of x⃗ to the variables in X⃗ ′.

Note that, contrary to the direct NESS definition, the HP definition allows for conjunctive causes
X⃗ = x⃗, instead of merely atomic causes X = x. The minimality condition (AC3) is there to prevent
irrelevant events to be added to such conjuncts. We can retrieve a definition of causation for atomic
events by simply considering any conjunct X = x that appears in an HP-cause X⃗ = x⃗ to be a cause as
well, which is indeed what Halpern suggests himself repeatedly [16].

The heart of the HP definition is AC2: it states that the outcome Y = y counterfactually depends on
the cause X⃗ = x⃗ given that we intervene to hold fixed a suitably chosen set of variables W⃗ at their
actual values w⃗. To see how this definition works, let us apply it to Example 1.

First we try substituting X⃗ = x⃗ with A1 = 1. Alas, this will not allow us to get A1 = 1 as a cause of
V = 1. We start with choosing W⃗ = ∅, and we get that (M, u⃗) ⊧ [A1 ← 0]V = 1. The reason is that
u⃗ encodes the actual context, in which A2 = 1, and thus also V = 1. Yet what is required for AC2
would be (M, u⃗) ⊧ [A1 ← 0]V = 0. The only other choice for W⃗ = w⃗ would be A2 = 1, and that
does not work either: (M, u⃗) ⊧ [A1 ← 0,A2 ← 1]V = 1.

Second we try A1 = 1 ∧A2 = 1. If this works, then AC3 is satisfied due to the fact that neither of
the conjuncts themselves satisfied AC2. W⃗ has to be ∅, since there are no other variables. Thus
what remains is to find counterfactual values for A1 and A2. As they are binary, the only option is
to consider A1 = 0 ∧A2 = 0. Clearly, for this choice AC2 is satisfied, as (M, u⃗) ⊧ [A1 ← 0,A2 ←

0]V = 0. Therefore A1 = 1 is an HP-cause of V = 1.

We can now formulate a definition of responsibility that is closely inspired by HK.

Definition 7 (HK Responsibility). An agent who performs A = a is responsible for outcome O = o
w.r.t. a responsibility setting (M, u⃗,E) if:

• (Causal Condition) A = a HP-causes O = o w.r.t. (M, u⃗).

• (Epistemic Condition) There exists a′ ∈ R(A) so that Pr(O = o∣[A ← a]) > Pr(O =

o∣[A← a′]).

In addition to disagreeing about the definition of causation, the HK definition also disagrees with the
BvH definition about the epistemic condition: rather than requiring that the agent failed to minimize
the probability of causing the outcome, the HK definition focuses on the agent failing to minimize
the probability of the outcome simpliciter.

6



Note that both HK and BvH’s epistemic condition satisfy our Responsibility Schema: an agent
who believes that they failed to minimize a probability that they could have minimized, thereby also
believes that they could have avoided satisfying the respective epistemic condition. Given that the
epistemic condition is a necessary condition for being responsible, they also believe that they could
have avoided being responsible for the actual outcome.

Let us apply the HK definition to Example 1. We already established that each Ai = 1 is an HP-cause
of V = 1, so the Causal Condition is met. Further, as long as each assassin attributes a strictly
positive probability that the other assassin may fail to shoot, we get that Pr(V = 1∣[Ai ← 1]) >

Pr(V = 1∣[Ai ← 0]), so that the Epistemic Condition is satisfied as well. (What if the assassins are
certain the other assassin will shoot? We come back to this in Section 5.) Therefore the HK definition
also arrives at the correct verdict for this example.

4 The Causal Condition

Before discussing the problems with NESS- and HP-causation, I present CNESS-causation [2]. As a
first step, we define NESS-causation as the transitive closure of direct NESS-causation, which is how
it was conceived by Wright [33]. In addition, we pay explicit attention to the path along which the
causal influence is transmitted.
Definition 8 (NESS). X = x NESS-causes Y = y along a path p w.r.t. (M, u⃗) if the values of the
variables in p form a path of direct-NESS causes from X = x to Y = y.

The Counterfactual NESS definition (CNESS) takes the NESS definition and adds a subtle coun-
terfactual difference-making condition: there should be a counterfactual value so that it would not
NESS-cause the outcome along the same path as the actual value, nor along any subpath.
Definition 9 (CNESS). X = x CNESS-causes Y = y w.r.t. (M, u⃗) if X = x NESS-causes Y = y
along some path p w.r.t. (M, u⃗) and there exists a x′ ∈R(X) such that X = x′ does not NESS-cause
Y = y along any subpath p′ ⊆ p w.r.t. (MX←x′ , u⃗).

With all the definitions of causation at hand, I now motivate my choice for the CNESS definition by
going over some well-chosen examples. We start with a case of Late Preemption.
Example 2 (Late Preemption). We return to our two assassins, but this time Assassin1 is slightly
faster, so that their bullet kills Victim, who collapses and thereby dodges Assassin2’s bullet.

In this case Assassin2 obviously did not cause Victim’s death, and is thus not responsible for the
outcome (despite the fact that their act itself is of course still blameworthy). BvH only allow variables
for strategies and are thus unable to capture this result, since the asymmetry between both assassins
is not a matter of strategy. As illustrated at length by Halpern [16], using causal models this poses
no problem. The equation V = BH1 ∨ BH2 expresses the fact that either bullet hitting Victim
would be fatal; BH1 = A1 and BH2 = A2 ∧ ¬BH1 captures the asymmetry between both assassins:
Assassin2’s bullet only hits Victim if Assassin1’s bullet does not. In the context at hand, we have
that A1 = A2 = BH1 = V = 1, and BH2 = 0. We now go through the various definitions to verify
that A1 = 1 NESS-causes, CNESS-causes, and HP-causes V = 1, whereas A1 = 1 does not directly
NESS-cause V = 1, thereby showing that the direct NESS definition is too simplistic.

We start by verifying that A1 = 1 does not directly NESS-cause V = 1. By itself A1 = 1 does not form
a sufficient set for V = 1, for setting both of theBH variables to 0 guarantees that the Victim survives:
(M, u⃗) ⊧ [A1 ← 1,BH1 ← 0,BH2 ← 0]V = 0. In fact, in this context, any sufficient set for V = 1
has to contain BH1 = 1, yet BH1 is sufficient for V = 1 all by itself. Thus A1 = 1 is not a necessary
member of any sufficient set for V = 1. Still, A1 = 1 NESS-causes V = 1 along p = {A1,BH1, V },
because A1 = 1 directly NESS-causes BH1 = 1 and BH1 = 1 directly NESS-causes V = 1.

To establish CNESS-causation requires having a look at the counterfactual setting (MA1←0, u⃗). In
this setting we get that A1 = 0, A2 = 1, BH1 = 0, and thus BH2 = 1 (as well as V = 1). (Informally:
if Assassin1 had not shot, then Assassin2’s bullet would have hit and killed Victim.) Here A1 = 0
directly NESS-causes BH1 = 0, BH1 = 0 directly NESS-causes BH2 = 1 (since it forms a sufficient
set together with A2 = 1 and A2 = 1 does not suffice on its own), and BH2 = 1 directly NESS-causes
V = 1. Therefore A1 = 0 NESS-causes V1 = 1 along p∗ = {A1,BH1,BH2, V }. (Take note of this
surprising finding. We come back to it in Example 3.) Since p∗ /⊆ p, we get thatA1 = 1 CNESS-causes
V = 1 (whereas A1 = 0 does not CNESS-cause V = 1 in the counterfactual setting, since p ⊆ p∗).
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To see that A1 = 1 HP-causes V = 1, it suffices to note that (M, u⃗) ⊧ BH2 = 0 and (M, u⃗) ⊧ [A1 ←

0,BH2 ← 0]V = 0. Lastly, I leave it to the reader to verify that A2 = 1 is not an HP-cause of V = 1,
and nor is it a direct NESS-cause of anything. Because of the latter, A2 = 1 is not a NESS-cause or a
CNESS-cause of anything either.

Modifying the BvH definition so that it uses NESS-causation instead of direct NESS-causation is
not a solution, for the NESS definition itself is problematic, as the following example shows. (In the
appendix I discuss one more example, a so-called “Frankfurt-case”, to show that BvH’s reliance on
strategies as opposed to events forms another source of problems.)

Example 3. We revisit the counterfactual setting of Example 2 in which Assassin1 does not shoot,
so that Victim is killed by Assassin2’s shot.

We already established for this scenario that A1 = 0 NESS-causes V = 1. Thus if we use the NESS
definition, we get the absurd result that Assassin1 failing to shoot causes Victim to die. If we then
supplement the example so that also BvH’s Epistemic Condition is fulfilled, we get that Assassin1
comes out as being responsible for Victim’s death. (Imagine, for instance, that they mistakenly
believe to be holding a flare gun that could sound a warning shot so that Victim ducks for cover to
avoid Assassin2’s bullet.) We already established that A1 = 0 does not CNESS-cause V = 1, the
reader may verify that the same holds for the HP-definition.

This leaves CNESS-causation and HP-causation as candidates for the Causal Condition. I use
Halpern & Pearl’s own example to argue against HP-causation [15].

Example 4 (Loader). “Suppose that a prisoner dies either if A loads B’s gun and B shoots, or
if C loads and shoots his gun. Taking D to represent the prisoner’s death and making the obvious
assumptions about the meaning of the variables, we have that D = 1 iff (A = 1 ∧B = 1) ∨ C = 1.
Suppose that in the actual context u⃗, A loads B’s gun, B does not shoot, but C does load and shoot
his gun, so that the prisoner dies. Clearly C = 1 is a cause of D = 1. We would not want to say that
A = 1 is a cause of D = 1, given that B did not shoot (i.e., given that B = 0).” [emphasis added]

I agree with Halpern and Pearl. A fortiori, A is not responsible for the prisoner’s death, even if A only
loaded the gun because he was convinced that B would shoot. Now consider the following variant. In
the original example, C’s shot is determined directly by the context. Imagine we add a little twist, so
that C would only fire his gun if B did not, i.e., the equation for C is C = ¬B. The above reasoning
regarding A still applies, and therefore I believe it is a mistake to all of a sudden consider A = 1 a
cause of D = 1. Yet A = 1 now is an HP-cause of D = 1 (as it appears in the HP-cause A = 1∧B = 0),
and thus A would be considered responsible for the prisoner’s death. The CNESS definition avoids
this result (as does the NESS definition): the only candidate sufficient set for D = 1 of which A = 1
could be a necessary part, is {A = 1,B = 1}. So the mere fact that B = 0 in both versions of the
example implies that A = 1 is not a NESS cause of D = 1 in either.

I leave a second counterexample to the HP definition for the appendix and refer the reader to [1] for
a detailed critical examination of the HP definition. The alternative definition I there presented is
in fact very similar to my CNESS definition, although the precise relation is the subject of further
investigation.5 This leads me to suggest adopting the CNESS definition for the Causal Condition.

5 The Epistemic Condition

Recall that the difference between HK and BvH’s Epistemic Conditions lies in whether an action
minimizes the probability of the outcome occurring (HK) or of it causing the outcome (BvH). Given
that one cannot cause an outcome unless the outcome actually occurs, and that vice versa, in many
cases the best way to make sure that an outcome occurs is by causing it, both of these conditions
often go hand in hand. However, as the following example illustrates, they do not always do so, and
when they do not the appeal of HK’s condition is stronger.

Example 5. Bombing A bomb (B) is connected to three detonators (D1, D2, and D3) by two
switches (S1 and S2). D1 is functional if only S1 is on, D2 is functional if only S2 is on, and D3 is
functional whenever S1 is on. The equations are thus as follows: B =D1 ∨D2 ∨D3, D1 = S1 ∧¬S2,
D2 = S2 ∧ ¬S1, and D3 = S1. Assassin2 (reasonably) assigns a probability of 0.6 to Assassin1

5I tentatively conjecture that the CNESS definition implies my other definition, and not vice versa.
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turning on S1. He decides to turn on S2, thereby guaranteeing that the bomb will explode. Assassin1
decides not to turn on S1, so that the bomb explodes due to the functioning of D2.

Here we certainly would want to say that Assassin2 is responsible for the explosion, and the reason
for this seems to be precisely that he knowingly increased the probability of the bomb going off
(from 0.6 if S2 = 0 to 1 now that S2 = 1). There is also no doubt that Assassin2’s action caused the
explosion: if he had turned S2 off, the bomb would not have exploded.

However, Assassin2 did act so as to minimize the probability that his act would cause the explosion,
regardless of whether one chooses NESS-, HP-, or CNESS-causation. Concretely, for all three
definitions of causation, Assassin2’s probability that S2 = 1 would cause B = 1 is 0.4, whereas his
probability that S2 = 0 would cause B = 1 is 0.6. (The details are worked out in the appendix.)

Note that in case S1 = 1, then S2 = 0 would result in the outcome being overdetermined, and thus
although the latter action would also be a cause of the outcome, it does nothing to contribute to the
probability of the outcome occurring. This is what explains why the two conditions can come apart,
and why I take the general moral of this story to be that increasing the probability of the outcome
trumps increasing the probability of causing the outcome.

However, it does not follow that the probability of causation is irrelevant, but only that it should fulfill
a secondary role. Consider again Example 2, and assume that Assassin1 believes that Assassin2
will shoot, and thus believes that Victim is facing certain death. (If that sounds too unrealistic,
imagine Assassin1 is one of ten members of a highly trained firing squad that is executing Victim.)
Thus the action of Assassin1 had no effect on the probability of the outcome, and would thus not
be responsible for Victim’s death according to HK’s definition. If Assassin2 has a similar belief,
then we end up with nobody being responsible. I take this to be an unacceptable result. (Fischer &
Ravizza reach the same conclusion when likewise discussing a case (Missile 2) in which an agent
knows that the outcome will ensue no matter what they do, and yet the agent is still responsible for
the outcome by choosing to cause it [12, p. 102].)

The lesson I draw from this is that if one knowingly has the opportunity to reduce the probability of
causation without thereby increasing the probability of the outcome, then an agent is responsible if
she fails to do so. Therefore I propose the following definition of moral responsibility.
Definition 10 (Responsibility). An agent who performs A = a is responsible for O = o w.r.t. a
responsibility setting (M, u⃗,E) if:

• (Causal Condition) A = a CNESS-causes O = o w.r.t. (M, u⃗).
• (Epistemic Condition) There exists a′ ∈R(A) so that one of the following holds:

1. Pr(O = o∣[A← a]) > Pr(O = o∣[A← a′])
2. Pr(O = o∣[A← a]) = Pr(O = o∣[A← a′]) and

Pr(A = a CNESS-causes O = o) > Pr(A = a′ CNESS-causes O = o).

6 Degree of Responsibility

My binary definition of responsibility can be complemented with a definition of the degree of
responsibility in order to capture the widely shared sense that responsibility (as well as blame and
praise) is a graded notion. Both BvH’s and HK’s Epistemic Conditions naturally suggest such a
definition, and so does my combined condition.

The obvious graded counterpart of HK’s condition is to simply look at the causal effect [22], which in
the context of causal strength is referred to as the Eells measure of causal strength of A = a relative
to A = a′: CSe(o, a, a

′) = Pr(O = o∣[A← a])−Pr(O = o∣[A← a′]) [13, 28]. Sprenger [28] argues
for accepting the Eells measure as a general measure of causal strength, which is in line with the
priority that my Epistemic Condition attributes to it. Moreover, when restricted to positive values,
this is in fact HK’s definition of the degree of blameworthiness. Likewise, the obvious counterpart of
BvH’s condition is to look at the increase of probability in causing the outcome. Thus I also define
the actual causation measure of causal strength as6

CSac(o, a, a
′
) = Pr(A = a CNESS-causes O = o∣[A← a])−Pr(A = a′ CNESS-causes O = o∣[A← a′]).

6Surprisingly, to my knowledge this rather obvious measure of causal strength has been overlooked so far in
the literature. (For any definition of causation of course, not just CNESS.)
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Taking into account that our Epistemic Condition is a mixture of those of BvH and HK, I suggest
the following definition, where the value of α expresses the relative importance of both measures.

Definition 11 (Degree of Responsibility). The degree of responsibility d for O = o of an agent
who performs A = a w.r.t. a responsibility setting (M, u⃗,E) is 0 in case the agent is not respon-
sible, otherwise let S = argmina∗∈R(A)Pr(O = o∣[A ← a∗]), and let a′′ = argmina′∈S Pr(A =

a′ CNESS-causes O = o∣[A← a′]), then d = CSe(o, a, a
′′) + α ⋅max(0,CSac(o, a, a

′′)).

Informally, this measure works as follows. Among all actions that minimize the probability of the
outcome, we take one that minimizes the probability of causing the outcome, and then take a weighted
sum of both causal strength measures for that action (where the second measure is ignored if it is
negative). This captures the idea that in order to avoid responsibility, the agent should choose an
action that makes the outcome as unlikely as possible, and then further select their action so that it
makes causing the outcome as unlikely as possible. The following example illustrates this definition.

Example 6. Imagine again our scenario from Example 1, but with the following change: Assassin1
is known to be a reliable assassin, whereas Assassin2 is known to have second doubts and almost
never shoots. In other words, it is reasonable for Assassin2 to expect that Assassin1 will shoot,
and it is reasonable for Assassin1 to expect that Assassin2 will not shoot. On this particular
occasion, both assassins shoot and kill victim.

Although both assassins are responsible according to my definition, it is easy to see that Assassin1 is
responsible to a higher degree: the measures of actual causation are identical for both and so are their
respective probabilities of the outcome occurring given that they shoot (namely 1), but Assassin1’s
probability of the outcome occurring given that they do not shoot is far lower, and thus7

CSAss1
e (V = 1,A1 = 1,A1 = 0) > CSAss2

e (V = 1,A2 = 1,A2 = 0).

Interestingly, recent studies offer empirical confirmation that the agent’s epistemic state does indeed
impact people’s judgments in precisely this way: in a disjunctive scenario (like ours), an agent who
performs an action that is typical (for them) is considered to be more responsible than an agent who
acts atypically [18]. The authors contrast this disjunctive scenario, which they have trouble explaining,
with a conjunctive one in which both agents’ actions are necessary for the outcome to occur, which
their account explains quite well. In a conjunctive scenario (in other words, if the equation were
V = A1 ∧A2), an agent who performs an action that is atypical is considered to be more responsible
than an agent who acts typically, flipping the judgments compared to the disjunctive scenario. That
is also the verdict of my degree of blameworthiness: in this case, the atypical agent can reasonably
expect the outcome to depend on them performing the action whereas the typical agent can reasonably
expect that their action has little impact, which translates into a larger measure of causal strength
(both CSe and CSac) for the former. So in contrast to the account of Kirfel and Lagnado [18], my
proposal applies equally to both scenarios and can thus be seen as a formal extension of their work.

7 Conclusion and Future Work

Based on a comparison with the work of BvH and HK, I have offered a novel formal definition of
moral responsibility that is particularly suited for AI systems by filling in the causal and the epistemic
conditions. I used contrasting examples to argue in favor of the Counterfactual NESS definition
of causation over the NESS and the HP definition, and in favor of a nuanced epistemic condition
that combines the two conditions of BvH and HK. I connected this work to measures of causal
strength to define a degree of responsibility. This quantified approach can be further enhanced by
also taking into account the robustness of causation, which recent research suggests plays a role
in responsibility judgments that is somewhat independent of causal strength [14], as well as by
considering the collective responsibility of groups of agents [6, 8]. Lastly, as discussed, a formal
definition of responsibility is a necessary prerequisite for definitions of blame and praise. To develop
definitions of the latter requires incorporating harm and benefit [3, 4], and possibly also intention.
Therefore the current definition can be extended in several ways, which I aim to do in future work.

7The superscripts Assi indicate that we are using each agent’s subjective probabilities to assess their degree
of responsibility.
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Appendix

Frankfurt-Case

The following is an example of a so-called “Frankfurt-case”, taken from HK. An enormous literature in
philosophy is devoted to dealing with these kinds of examples, attempting to reconcile intuitions about
responsibility with the counterfactual and causal features that these examples contain. Surprisingly,
almost none of it uses causal models, and yet doing so reveals the causal structure to be entirely
unproblematic.

Example 7 (Frankfurt). Imagine Jones poisons Smith, who dies. Unbeknownst to Jones, Black
was observing his behavior: if Jones had not poisoned Smith, Black would have given Jones a
gun and manipulated him in some way or other so that Jones would shoot Smith. Black is both
a perfect observer and manipulator of Jones’s behavior, and is thus guaranteed to succeed in his
plans. Intuitively it is clear that Jones is responsible for Smith’s death, despite the fact that he could
not have prevented it. (Typical Frankfurt cases focus on responsibility for an action, as opposed to
responsibility for the consequence of an action, and therefore scenarios are normally formulated
such that Black manipulates Jones to perform the same action. Except for the shift from the action to
the consequence though, those cases are structurally isomorphic.)8

The Epistemic Condition of both BvH and HK is obviously fulfilled, for Jones believes that Smith’s
death is completely dependent on his poisoning. We consider the following equations to assess the
causal condition: SD = JP ∨JS to capture the fact that Smith dies (SD) if either Jones shoots (JS)
or poisons (JP ) him, JS = BM to capture that Jones shoots only when Black hands him a gun and
manipulates him (BM ), and finally BM = ¬JP to capture that Black’s action depends on Jones’s
failure to poison.

Regardless of whether we apply the NESS definition, the CNESS definition, or the HP definition,
JP = 1 comes out as a cause of SD = 1, and thus the Causal Condition is satisfied. (This is easy to
see by observing that the structure of this example is a standard case of Early Preemption.)

BvH claim that their account can handle Frankfurt-cases like this, but that is a mistake. Recall that
their variables represent the agents’ strategies rather than their actions, and that we are limited to
using a single equation. The outcome function they use when discussing a Frankfurt-case is equivalent
to the equation SD = JP ∨B, where B represents Black adopting his preferred strategy. Therefore
on their account both Jones and Black come out as causes of Smith’s death, which is not a sensible
result. BvH admit that their NESS definition is unable to handle conditional strategies like that of
Black, but contend that since we are here focussing on Jones this is not a problem. Obviously simply
stating that one should only focus on the sensible results of one’s theory is not a satisfactory way of
defending it... (This example also highlights a more philosophical problem with their approach: it is
not at all clear what it means for a strategy to be a cause. The broad consensus is that causal relata
are either events/omissions or properties of events, whereas conditional strategies are neither.)

Counterexample to the HP-definition

We here consider a second counterexample to the HP definition that was suggested in [24]. The
example is of particular interest as it was presented precisely within the context of the relation
between causation and moral responsibility.

Example 8. We have equations Y =X ∨D and X =D, and we consider a context such that D = 1.
This looks very much like a standard case of overdetermination in which X = 1 and D = 1 are both
overdetermining causes. Yet X = 1 is not an HP-cause of Y = 1 (and it is a CNESS-cause). The
reason for this is that Y = 1 depends counterfactually on D = 1 by itself, whereas it does not depend
on X = 1 by itself and nor does it when we take D = 1 as our witness W⃗ = w⃗. Rosenberg & Glymour
[24] argue that this result shows the HP definition cannot offer a basis for moral responsibility, by
offering the following scenario to go along with these equations:

8This analysis can just as easily be applied to these more typical Frankfurt cases. Still, for those who are
sceptical that proponents of Frankfurt cases are equally comfortable as I am with moving from actions to
consequences, I point out that Fischer & Ravizza apply this shift in exactly the same manner as I do when
discussing responsibility for consequences [12, ch. 4].
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An obedient gang is ordered by its leader to join him in murdering someone, and
does so, all of them shooting the victim at the same time, or all of them together
pushing the plunger connected to a bomb. The action of any one of the gang would
suffice for the victim’s death. If responsibility implies causality, whom among them
is responsible? ... Halpern’s theory says the gang leader and only the gang leader
is a cause of the victim’s death. This is a morally intolerable result; absent a
plausible general principle severing responsibility from causation, any theory that
yields such a result should be rejected.

Bombing

We now go through the details for the Bombing example. (Ex. 6) We need to consider the following
four scenarios:

1. S2 = 1 and S1 = 0

2. S2 = 1 and S1 = 1

3. S2 = 0 and S1 = 0

4. S2 = 0 and S1 = 1

We first go through the details for CNESS-causation.

In scenario 1 we have that S1 = D1 = D3 = 0 and S2 = D2 = B = 1. Here {S2 = 1, S1 = 0} is
sufficient for D2, whereas {S1 = 0} is not. Therefore S2 = 1 directly NESS-causes D2 = 1. Clearly
also D2 = 1 directly NESS-causes B = 1, and thus S2 = 1 NESS-causes B = 1 along {S2,D2,B}.
What about the counterfactual setting (MS2←0, u⃗)? That corresponds to scenario 3. There, the bomb
doesn’t even explode (so B = 0), and thus there are no causes of B = 1. We conclude that in scenario
1 S2 = 1 CNESS-causes B = 1.

In scenario 2 we have that S1 = S2 = D3 = B = 1 and D1 = D2 = 0. In this scenario B = 1 is
directly NESS-caused only by D3 = 1. Since S2 = 1 does not directly NESS-cause D3 = 1, it is not a
NESS-cause of B = 1.

In scenario 4 we have that S1 = D1 = D3 = B = 1 and S2 = D2 = 0. Here {S2 = 0, S1 = 1} is
sufficient for D1, whereas {S1 = 1} is not. Therefore S2 = 0 directly NESS-causes D1 = 1. Clearly
also D1 = 1 directly NESS-causes B = 1, and thus S2 = 0 NESS-causes B = 1 along {S2,D1,B}.
What about the counterfactual setting (MS2←1, u⃗)? That corresponds to scenario 2, in which S2 = 1
does not NESS-cause B = 1. So S2 = 0 CNESS-causes B = 1 in scenario 4.

As a result, if Assassin2 chooses S2 = 1, the probability of CNESS-causing B = 1 is the probability
that S1 = 0, which is 0.4. By contrast, if Assassin2 chooses S2 = 0, the probability of CNESS-
causing B = 1 is the probability that S1 = 1, which is 0.6.

NESS-causation for each scenario is already discussed in the above, so we move on to consider
HP-causation. In scenario 1 we have counterfactual dependence of B = 1 on S2 = 1, and it is
well-known that this suffices for HP-causation (as well as for CNESS-causation, by the way [2]).

In scenario 2, note that D3 suffices for B = 1, and thus satisfying AC2 is possible only when either
D3 = 1 or S1 = 1 is also part of the candidate cause X⃗ = x⃗. However, B = 1 counterfactually depends
on D3 = 1, meaning that D3 = 1 is a cause all by itself. Thus {S2 = 1,D3 = 1} is not minimal, and
because of AC3 this means that it is not a cause. That leaves {S2 = 1, S1 = 1}. But this is not minimal
either, for S1 = 1 is a cause all by itself: one can take W⃗ = {D2} as a witness to get B = 0 when S1

is set to 0. Therefore S2 = 1 is not part of any cause of B = 1.

Since B = 0 in scenario 3, S2 = 0 does not HP-cause B = 1 there either, leaving scenario 4. As with
scenario 2, the candidate cause will have to include D3 = 1 or S1 = 1. Contrary to scenario 2 though,
D3 = 1 is no longer a cause by itself, since D1 = 1 holds, and will remain to hold also when we
set D3 to 0. Since B = 1 counterfactually depends on {S2 = 0,D3 = 1}, we get that each of them
HP-causes B = 1.
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