Implicit Differentiable Outlier Detection Enables Robust Deep Multimodal Analysis

Zhu Wang
zwang260@uic.edu

- @ellenz_wang

Sourav Medya medya@uic.edu

- @sourav_medya

Sathya N. Ravi sathya@uic.edu

[^0]
Popular tasks for Multimodal pipelines

Input
 Output

Sentence:
One image features multiple ducks on a country road, and the other image shows a mass of white ducks that

Answers:

Common mis-prediction : radio x

Ours: electricity

Output

Common mis-prediction : True
Answers:
 are not in flight. Can We Use exterinall knowledge in MM pipelines?

Augmenting External knowledge in MM pipeline via KG

Caption:
A man riding a bicycle down a city street.

Another challenge: How to align external knowledge in MM pipeline?

Implicit OOD detection layer: Out-ofDistribution detection using EM iterations

$$
\begin{array}{ccccc}
F(x ; \Theta) & F(x ; \Theta) & \cdots & F(x ; \Theta) & F(x ; \Theta) \\
t=1 & t=2 & & t=T-1 & t=T
\end{array}
$$

We approximated the density of multimodal features for outlier detection.

Implicit Differentiable OOD detection layer

$$
\begin{gathered}
F(x ; \Theta) \\
t=T-1
\end{gathered}
$$

EM-based algorithm as a fix point iteration:

$$
\begin{equation*}
\mu_{k}^{t+1} \leftarrow \frac{\sum_{i=1}^{N} \exp \left(-w\left(\mu_{k}^{t}\right)\right) x_{i}}{\sum_{i=1}^{N} \exp \left(-w\left(\mu_{k}^{t}\right)\right)} \tag{1}
\end{equation*}
$$

GEM score for Outlier Detection:

$$
\begin{equation*}
s\left(l_{j}\right)=\log \sum_{k=1}^{K} \exp \left(-\frac{1}{2}\left(l_{j}-\mu_{k}^{*}\right)^{T} \sigma_{k}^{-1}\left(l_{j}-\mu_{k}^{*}\right)\right) \tag{2}
\end{equation*}
$$

Jacobian-Free backprop [1] \qquad
[1] Fung, Samy Wu, et al. "Jfb: Jacobian-free backpropagation for implicit networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 6. 2022.

Efficient Backpropagation for OOD Detection Layer

- We use Jacobian-Free Backpropagation (JFB) to unroll the last few iterates of the EM algorithm for gradient.

T

Our final VK-OOD Multimodal pipeline

Experiments - Backpropgation methods

- We used different backpropgation methods in OOD detection layer with ViLT as the backbone.
- JFB-EM gained 76.8\% in term of accuracy on VQAv2 task with $1 / 4$ backward time comparing to vanilla EM.

Method	\#Param(M)	\#FLOPs(G)	Time(m)/epoch	Max Mem(Mb)	VQAv2	
		185.2	39.6		18673	76.6
JB-EM	125.2	115.7	39.6	12.7	14512	76.6
JFB-EM	124.8	108.6	39.6	6.3	13674	76.8

Table 1: Experimental results of different backpropagation method in the dense OOD detection layer. JFB-EM is much more efficient in backward pass and use less memory. It also outperforms on the VQAv2 task in terms of accuracy.

Experiments - Downstream tasks

Model	\#Params	VQAv2	NLVR2	COCO		Flickr30k	
				TR R@5	IR R@5	TR R@5	IR R@5
ViLT	87	70.3	74.6	86.2	72	95.6	86.8
UNITER	155	72.7	75.8	87.4	78.5	97.1	92.4
ALBEF	314	74.5	80.5	91.4	81.5	99.4	96.7
VinVL	157	75.9	83.1	92.6	83.2	-	-
BLIP*	346	77.5	82.8	95.2	$\mathbf{8 5 . 4}$	$\mathbf{9 9 . 8}$	$\mathbf{9 7 . 5}$
VK-OOD-s(ViLT)	87.4	76.7	84.3	90.9	81.6	97	94.3
VK-OOD-s(CLIP)	113.4	76.2	83.8	92.8	83.4	99.6	96.7
VK-OOD-s(BLIP)	346.4	77.8	84.1	$\mathbf{9 5 . 4}$	$\underline{85.2}$	$\mathbf{9 9 . 8}$	97.2
VK-OOD-1(ViLT)	125	76.8	$\mathbf{8 4 . 6}$	91.7	81.3	97.2	94.5
VK-OOD-l(CLIP)	151	76.1	83.9	93.1	83.6	99.6	96.8
VK-OOD-1(BLIP)	412	$\mathbf{7 7 . 9}$	$\underline{84.5}$	95.1	84.8	99.6	97.1

Table 5: Overall performance on multiple downstream tasks. We demonstrate VK-OOD scale with different model backbones and achieve the best and second-best results. VK-OOD-s is the scalar case, and VK-OOD-1 is the dense case. *our implementation.

Experiments - Qualitative Analysis

Original

A man riding bicycle

Car locates on street

Bus locates on street

Traffic lights locate on street

Buildings locate on street

Contributions

Caption: A man riding a bicycle down a city street. Question: Is this person crossing illegally or legally?

O ConceptNet

Contributions

- We mainly aim to integrating implicit and explicit knowledge seamlessly in vision-language model.
- It is crucial to identify high-quality knowledge during forward pass due to error propagation that may affect downstream predictions.
- We propose an end-to-end framework with the implicit differentiable outlier detection layer to filter noise knowledge during training.

Thanks for your attention! Q\&A

$\stackrel{F}{=}$ Paper

[^0]: @ @tweetingsathya

