

Implicit Differentiable Outlier Detection Enables Robust Deep Multimodal Analysis

Zhu Wang zwang260@uic.edu

Sourav Medya medya@uic.edu

@sourav_medya

Sathya N. Ravi sathya@uic.edu

Popular tasks for Multimodal pipelines

Output Input

Captions:

A clock mounted on a pale wall.

Questions:

What energy source does this object run on?

Answers:

Common mis-prediction: radio

Ours: electricity

Output

Answers:

Input

Sentence:

One image features multiple ducks on a country road, and the other image shows a mass of white ducks that are not in flight.

Common mis-prediction: True

weuse external knowledge in MM pipelines?

Augmenting External knowledge in MM pipeline via KG

Caption:

A man riding a bicycle down a city street.

Question:

Is this person crossing illegally or legally?

Query from KG

Another challenge: How to align external knowledge in MM pipeline?

Implicit OOD detection layer: Out-of-Distribution detection using EM iterations

$$F(x;\Theta) \qquad F(x;\Theta) \qquad \dots \qquad F(x;\Theta) \qquad F(x;\Theta) \qquad t = T \qquad t = T$$

We approximated the density of multimodal features for outlier detection.

Implicit Differentiable OOD detection layer

EM-based algorithm as a fix point iteration:

$$\mu_k^{t+1} \leftarrow \frac{\sum_{i=1}^N \exp(-w(\mu_k^t)) x_i}{\sum_{i=1}^N \exp(-w(\mu_k^t))}$$
(1)

GEM score for Outlier Detection:

$$S_{ood} < \lambda \qquad s(l_j) = \log \sum_{k=1}^K \exp(-\frac{1}{2}(l_j - \mu_k^*)^T \sigma_k^{-1}(l_j - \mu_k^*))$$
 (2)

Jacobian-Free backprop [1] ◀

[1] Fung, Samy Wu, et al. "Jfb: Jacobian-free backpropagation for implicit networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 6. 2022.

Efficient Backpropagation for OOD Detection Layer

• We use Jacobian-Free Backpropagation (JFB) to unroll the *last few iterates* of the EM algorithm for gradient.

Our final VK-OOD Multimodal pipeline

Experiments — Backpropgation methods

- We used different backpropgation methods in OOD detection layer with ViLT as the backbone.
- JFB-EM gained 76.8% in term of accuracy on VQAv2 task with 1/4 backward time comparing to vanilla EM.

Method	#Param(M)	#FLOPs(G)	Time(m)/epoch		Max Mem(Mb)	VO Av2
			Forward	Backward	Max Melli(Mb)	VQAv2
Vanilla-EM	152.6	185.2	39.6	26.8	18673	76.6
JB-EM	125.2	115.7	39.6	12.7	14512	76.6
JFB-EM	124.8	108.6	39.6	6.3	13674	76.8

Table 1: Experimental results of different backpropagation method in the dense OOD detection layer. JFB-EM is much more efficient in backward pass and use less memory. It also outperforms on the VQAv2 task in terms of accuracy.

Experiments — Downstream tasks

Model	#Params	VQAv2	NLVR2	COCO		Flickr30k	
Model				TR R@5	IR R@5	TR R@5	IR R@5
ViLT	87	70.3	74.6	86.2	72	95.6	86.8
UNITER	155	72.7	75.8	87.4	78.5	97.1	92.4
ALBEF	314	74.5	80.5	91.4	81.5	99.4	96.7
VinVL	157	75.9	83.1	92.6	83.2	-	-
BLIP*	346	77.5	82.8	95.2	85.4	99.8	97.5
VK-OOD-s(ViLT)	87.4	76.7	84.3	90.9	81.6	97	94.3
VK-OOD-s(CLIP)	113.4	76.2	83.8	92.8	83.4	99.6	96.7
VK-OOD-s(BLIP)	346.4	77.8	84.1	95.4	85.2	99.8	97.2
VK-OOD-l(ViLT)	125	76.8	84.6	91.7	$\overline{81.3}$	97.2	94.5
VK-OOD-l(CLIP)	151	76.1	83.9	93.1	83.6	99.6	96.8
VK-OOD-l(BLIP)	412	77.9	84.5	95.1	84.8	99.6	97.1

Table 5: Overall performance on multiple downstream tasks. We demonstrate VK-OOD scale with different model backbones and achieve the best and second-best results. VK-OOD-s is the scalar case, and VK-OOD-l is the dense case. *our implementation.

VK-OOD achieved the best and second-best results in all downstream tasks comparing with baselines.

Experiments — Qualitative Analysis

Original

A man riding bicycle Car locates on street Bus locates on street Traffic lights locate on street Buildings locate on street

Contributions

Caption: A man riding a bicycle down a city street.
Question: Is this person crossing illegally or legally?

Contributions

- We mainly aim to integrating implicit and explicit knowledge seamlessly in vision-language model.
- It is crucial to identify high-quality knowledge during forward pass due to error propagation that may affect downstream predictions.
- We propose an end-to-end framework with the implicit differentiable outlier detection layer to filter noise knowledge during training.

Thanks for your attention! Q&A

