

# with

### L2T-DLN: Learning to Teach Dynamic Loss Network **Zhaoyang Hai** Liyuan Pan Xiabi Liu



E-mail: {haizhaoyang, Liyuan.pan, liuxiabi}@bit.edu.cn









### **Teaching-Learning Transaction**

### adjusting

### teacher

### refining



strategy



### feedback

### student

### teaching

2



### Motivation





- x: training data
- y: label
- τ: states of student
- $S_{\theta}$ : student model
- L<sup>m</sup>: dynamic loss function
- $T_{\varphi}$ : teacher model



### Motivation



memory

unit

1) adopting an LSTM teacher to accumulate the experience during teaching a student;

2) employing the state of DLN to update the parameter of DLN.



![](_page_3_Picture_6.jpeg)

 $\nabla \phi$ : gradient concerning dynamic loss  $L^{m}_{\Phi}$ : dynamic loss network

![](_page_4_Picture_0.jpeg)

### Advantages

### Our L2T-DLN bring two benefits:

### 1)

2) the gradient concerning DLN achieves holistic information integration throughout the learning process, facilitated by prior knowledge (chain rule).

capturing and maintaining short- and long-term dependencies during teaching process;

![](_page_4_Picture_7.jpeg)

![](_page_5_Picture_0.jpeg)

### Method

![](_page_5_Figure_2.jpeg)

![](_page_5_Figure_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_6_Picture_0.jpeg)

### **Convergence Analysis**

Conclusion 1: Let  $\mathcal{H} \triangleq \nabla^2 e(x)$  denote the Hessian matrix at  $\epsilon$ -second-order stationary solution  $v^*$  where  $\lambda_{min}(\mathcal{H}) \leq -\gamma$  and  $\gamma > 0$ . We have  $\lambda_{max}(M^{-1}G) > 1 + \eta\gamma/(1 + C/C_{max})$ 

![](_page_6_Picture_3.jpeg)

![](_page_7_Picture_0.jpeg)

### Results

### Comparison with SOTA loss functions in classification task.

| Method          | CIFAR-10                          |                      |                 |               | CIFAR-100    |                     |                    | ImageNet    | length |
|-----------------|-----------------------------------|----------------------|-----------------|---------------|--------------|---------------------|--------------------|-------------|--------|
|                 | ResNet8                           | ResNet20             | ResNet32        | WRN           | ResNet8      | ResNet20            | ResNet32           | NASNet-A    |        |
| CE              | 87.6                              | 91.3                 | 92.5            | 96.2          | 60.2         | 67.7                | 69.6               | 73.5        | -      |
| Smooth 🔽        | 87.9                              | 91.5                 | 92.6            | 96.2          | 60.5         | 68.0                | 69.9               | -           | -      |
| L-M Softmax [6] | 88.7                              | 92.0                 | 93.0            | 96.3          | 61.1         | 68.4                | 70.4               | -           | -      |
| L2T-DLF [10]    | 89.2                              | 92.4                 | 93.1            | 96.6          | 61.7         | 69.0                | 70.8               | -           | 1      |
| ARLF [1]        | 89.5                              | 91.5                 | 92.2            | 95.9          | 60.2         | 67.8                | 69.9               | -           | -      |
| SLF [5]         | 89.8                              | 93.0                 | 93.6            | 97.1          | 62.7         | 69.9                | 71.5               | -           | -      |
| ALA [3]         | -                                 | -                    | 93.2            | 96.7          | 62.2         | 69.5                | 70.9               | <b>74.6</b> | 200    |
| Ours            | $\textbf{90.7} \pm \textbf{0.06}$ | $93.4 \pm 0.18$      | $93.8 \pm 0.20$ | $96.7\pm0.09$ | $63.5\pm0.0$ | $07\ 70.4 \pm 0.03$ | $8\ 72.0 \pm 0.11$ | 74.2        | 25     |
|                 | Comparis                          | on with S            | SOTA met        | hod in n      | oisy-lab     | oel classifi        | cation tas         | k.          |        |
|                 | <b>M</b> - +11                    | CIFAR-10             |                 | FAR-10        | 10 CIFAR     |                     | -100               |             |        |
|                 |                                   |                      | p=20%           | p=40          | )%           | p=20%               | p=40%              |             |        |
|                 | Baseline                          |                      | 76.83           | 70.7          | 77           | 50.86               | 43.01              |             |        |
|                 | MentorNe                          | t [ <mark>4</mark> ] | 86.36           | 81.7          | 76           | 61.97               | 52.66              |             |        |
|                 | Meta-Weight-Net [9]<br>L2R [2]    |                      | 90.33           | 87.5          | 54           | 64.22               | 58.64              |             |        |
|                 |                                   |                      | 91.05           | 88.7          | 71           | 66.08               | 60.51              |             |        |
|                 | Ours                              |                      | 92.11±0.2'      | 7 89.39±      | 1.20 70      | $0.05 \pm 0.23$     | 61.27± 0.51        |             |        |

![](_page_7_Picture_6.jpeg)

$$-100$$
  
 $p=40\%$   
43.01  
52.66  
58.64  
60.51  
**61.27 \pm 0.51**

![](_page_8_Picture_0.jpeg)

### Results

### Comparison with YOLO-v3 loss in objective detection.

| Detectors             | Size | mAP  | FPS |
|-----------------------|------|------|-----|
| YOLOV3 <sup>[8]</sup> | 416  | 55.3 | 35  |
| YOLOV3-ours           | 416  | 56.9 | 35  |

### Comparison with PSPNet loss in semantic segmentation.

D

![](_page_8_Picture_5.jpeg)

| Method                     | mIoU           |
|----------------------------|----------------|
| PSPNet [11]<br>PSPNet-ours | $82.6 \\ 82.9$ |

![](_page_9_Picture_0.jpeg)

### **More details** Visualization of DLN during MNIST learning

![](_page_9_Figure_2.jpeg)

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

(d)

![](_page_10_Picture_0.jpeg)

### More details

### Visualization of gradient of the student in noisy-label classification

![](_page_10_Figure_3.jpeg)

(a) CIFAR10

![](_page_10_Figure_5.jpeg)

(b) CIFAR100

![](_page_10_Picture_7.jpeg)

![](_page_11_Picture_0.jpeg)

### References

 Jonathan T Barron. A general and adaptive robust loss function. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339, 2019.
 Yang Fan, Yingce Xia, Lijun Wu, Shufang Xie, Weiqing Liu, Jiang Bian, Tao Qin, and Xiang-Yang Li. Learning to reweight with deep interactions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7385–7393, 2021.
 Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Bautista Martin, Shih-Yu Sun, Carlos Guestrin, and Josh Susskind. Addressing the loss-metric mismatch with adaptive loss alignment. In International conference on machine learning, pages 2891–2900. PMLR, 2019.
 Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In International conference on machine learning, pages 2304–2313. PMLR, 2018.
 Qingliang Liu and Jinmei Lai. Stochastic loss function. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4884–4891, 2020.

[6] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolutional neural networks. In International Conference on Machine Learning, pages 507–516. PMLR, 2016.

[7] Tan Nguyen and Scott Sanner. Algorithms for direct 0–1 loss optimization in binary classification. In International Conference on Machine Learning, pages 1085–1093. PMLR, 2013.

[8] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
[9] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-net: Learning an explicit mapping for sample weighting. Advances in neural information processing systems, 32, 2019.
[10] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, and Tie-Yan Liu. Learning to teach with dynamic loss functions. Advances in neural information processing systems, 31, 2018.
[11] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2881–2890, 2017.

![](_page_11_Picture_6.jpeg)

![](_page_12_Picture_0.jpeg)

## 

# Thank you!

![](_page_12_Picture_3.jpeg)