

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

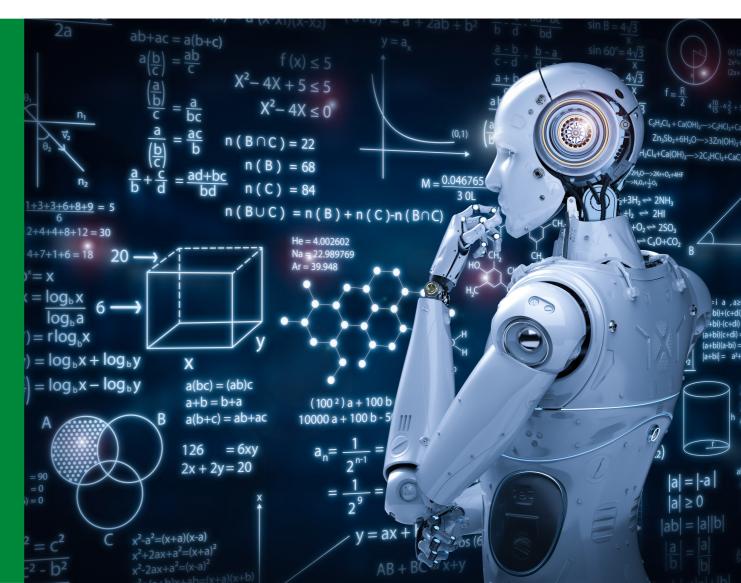
FACULTY FOR MATHEMATICS, INFORMATICS, AND STATISTICS DEPARTMENT OF MATHEMATICS

BAVARIAN AI CHAIR "MATHEMATICAL FOUNDATIONS OF ARTIFICIAL INTELLIGENCE"

A Fractional Graph Laplacian Approach to Oversmoothing

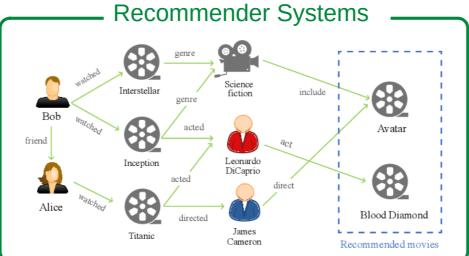
S. Maskey*, R. Paolino*, A. Bacho, G. Kutyniok

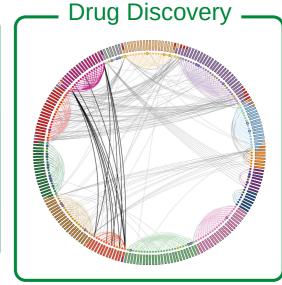
Department of Mathematics - LMU Munich

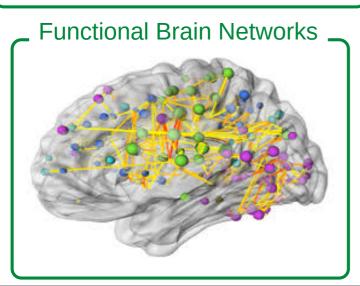


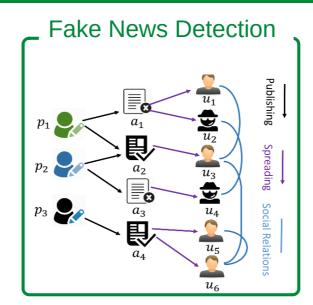
The Current Impact of Graph Neural Networks

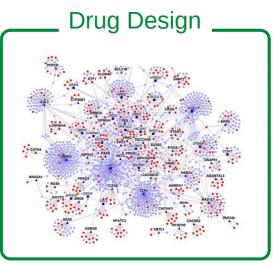
Social Networks











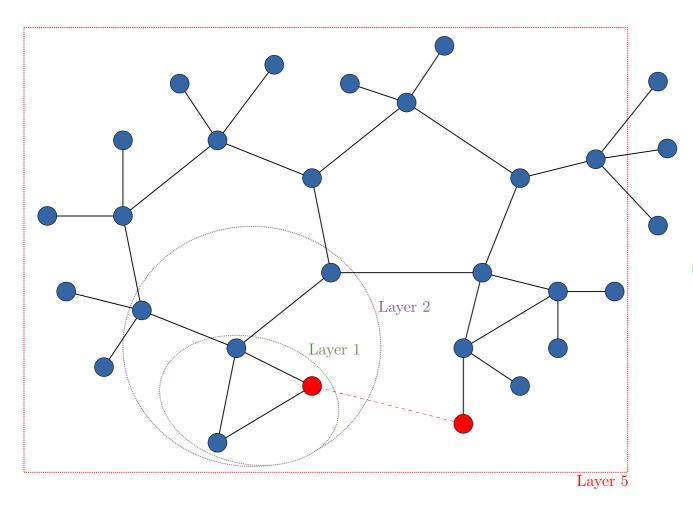
Gilmer, J., et al. (2017). Neural message passing for quantum chemistry.

Wang, J., et al. (2018). Billion-scale commodity embedding for e-commerce recommendation in alibaba.

Monti, F., et al. (2019). Fake news detection on social media using geometric deep learning.

Fan, W., et al. (2019). Graph neural networks for social recommendation.

GNNs Fail to Capture Long-Range Interactions



- → To capture long-range dependencies, GNNs need increased depth.
- \rightarrow The receptive field increases exponentially fast^{1,2}.
 - \rightarrow All nodes have the same computational graph.
 - \rightarrow All nodes get the same embedding.
 - \rightarrow The nodes' features converge to similar values.

→Oversmoothing

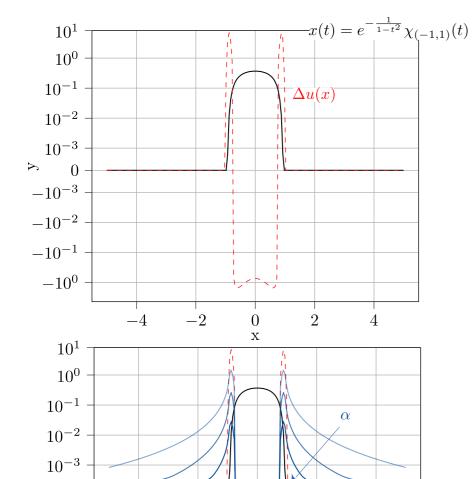
 \rightarrow Not analyzed in directed graphs.

Can we take inspiration from physics to address it?

¹Oono, K., Suzuki, T. (2019). Graph Neural Networks Exponentially Lose Expressive Power for Node Classification.

²Cai, C., Wang, Y. (2020). A Note on Over- Smoothing for Graph Neural Networks.

Non-Local Diffusion



 \mathbf{X}

GNNs propagate node features similarly to the heat equation

$$\begin{cases} x'(t) = -\Delta x(t), \\ x(0) = x_0. \end{cases}$$

where the Laplacian is a differential $(\rightarrow local)$ operator

$$-\Delta x(t) = \lim_{r \to 0} c_n \int_{|t| < r} \frac{x(t) - x(s)}{r^{n+2}} ds.$$

Solution: replace the local operator $(-\Delta)$ with the global operator $(-\Delta)^{\alpha}$ defined as

$$(-\Delta)^{\alpha}x(t) = c_{n,\alpha} \int_{\mathbb{R}^n} \frac{x(t) - x(s)}{|t - s|^{n+2\alpha}} ds, \ \alpha \in (0, 1).$$

 \rightarrow The support increases as α decreases.

 -10^{-3}

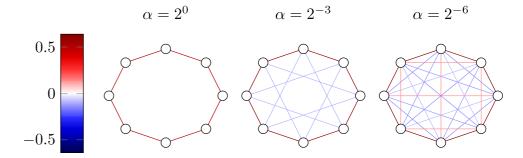
 -10^{-2}

 -10^{-1}

 -10^{0}

Fractional Graph Laplacian

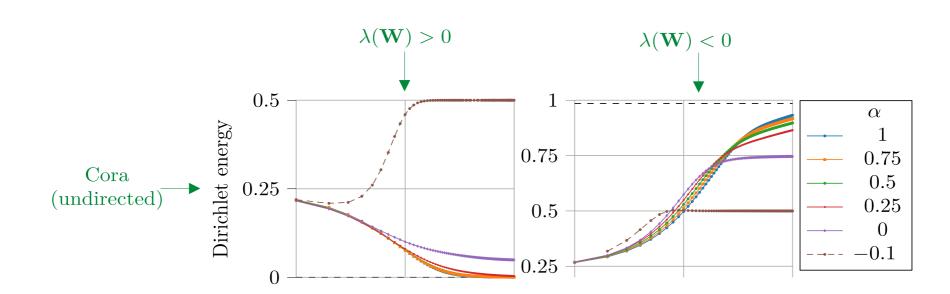
Fractional Graph Laplacian $\mathbf{U}, \mathbf{\Sigma}, \mathbf{V}^{\mathsf{H}} = \mathrm{SVD}(\mathbf{L}), \, \mathbf{L}^{\alpha} \coloneqq \mathbf{U} \mathbf{\Sigma}^{\alpha} \mathbf{V}^{\mathsf{H}}.$



Fractional Graph Heat Eq. $\mathbf{x}'(t) = -\mathbf{L}^{\alpha} \mathbf{x}(t) \mathbf{W}, \mathbf{x}(0) = \mathbf{x}_{0}.$

solution

 $\operatorname{vec}(\mathbf{x})(t) = \exp(-(\mathbf{W} \otimes \mathbf{L}^{\alpha})t) \operatorname{vec}(\mathbf{x}_{0}).$




```
% A, x_0 \text{ are given.}
     % Preprocessing
 \mathbf{1} \ \mathbf{D}_{\mathrm{in}} = \mathrm{diag}(\mathbf{A}\mathbf{1})
 \mathbf{p}_{\mathrm{out}} = \mathrm{diag}(\mathbf{A}^\mathsf{T} \mathbf{1})
 \mathbf{3} \; \mathbf{L} = \mathbf{D}_{\mathrm{in}}^{-1/2} \mathbf{A} \mathbf{D}_{\mathrm{out}}^{-1/2}
 4 U, \Sigma, V^H = svd(L)
     \% \alpha, h, \mathbf{W} learnable parameters
     % x<sub>0</sub> initial nodes' features
 5 def training_step(x_0):
            \mathbf{x}_0 = \text{input\_MLP}(\mathbf{x}_0)
            % Forward Euler Scheme
            for n \in \{1, \dots, N\} do
             \mathbf{x}_n = \mathbf{x}_{n-1} - i h \mathbf{U} \mathbf{\Sigma}^{\alpha} \mathbf{V}^{\mathsf{H}} \mathbf{x}_{n-1} \mathbf{W}
            \mathbf{x}_N = \text{output\_MLP}(\mathbf{x}_N)
            return \mathbf{x}_N
10
```

fLode

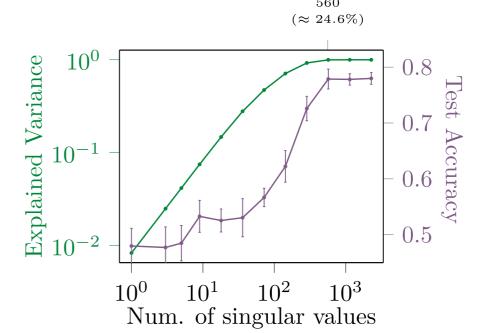
Disadvantages:

- 1. Computational cost grows cubically in N.
- 2. Storage cost grows quadratically in N.

Advantages:

GitHub

- 1. Easy to implement.
- 2. Versatile across different types of graphs.
- 3. Reduced cost with truncated SVD.



Thank you very much for your attention!

Maskey*, S., Paolino*, R., Bacho, A., Kutyniok, G. (2023). A Fractional Graph Laplacian Approach to Oversmoothing.