On permutation symmetries in Bayesian neural network posteriors: a variational perspective

Simone Rossi^, Ankit Singh, Thomas Hannagan*
*Stellantis (France), §Stellantis (India)

Observation: Neural networks have many symmetries that are functionally equivalent. Recent evidence that SGD solutions are linearly connected if we account for permutations symmetries.

[^0]Entezari, Rahim et al. 2022.

Observation: Neural networks have many symmetries that are functionally equivalent. Recent evidence that SGD solutions are linearly connected if we account for permutations symmetries.

Question: Do BNNs (and variational inference) share the same linearly connected behavior after accounting for functionally equivalent permutations?

Conjecture: Yes

Log-posterior for CIFAR10

[^1]Entezari, Rahim et al. 2022.
\rightarrow Given $\boldsymbol{\theta}$ and \boldsymbol{P}, build $\boldsymbol{\theta}^{\prime}$ as in the figure
\rightarrow Given q_{1}, define $P_{\#} q_{1}$ the push-forward distribution for $\boldsymbol{\theta}^{\prime}$
\rightarrow By construction, $P_{\#} q_{1}$ is functionally equivalent to q_{1}

$$
\begin{equation*}
q(\boldsymbol{f}(\boldsymbol{\theta}, \cdot))=q\left(\boldsymbol{f}\left(\boldsymbol{\theta}^{\prime}, \cdot\right)\right) . \tag{1}
\end{equation*}
$$

Finding symmetries by looking at permutations

Assume two independently trained VI solutions q_{0} and q_{1}

Objective

Given q_{0} and q_{1}, find P s.t. $P_{\#} q_{1}$, functionally equivalent to q_{1}, is aligned to q_{0}.

$$
\left.\left.\begin{array}{rl}
\underset{\boldsymbol{P} \in \mathbb{S}(d)}{\arg \min } \mathcal{W}_{2}^{2}\left(P_{\#} q_{1}, q_{0}\right)=\underset{\left\{P_{i}\right\}}{\arg \min } & \mathcal{W}_{2}^{2}(
\end{array} P_{1 \#} q_{1}^{(1)}, q_{0}^{(1)}\right)+\mathcal{W}_{2}^{2}\left(\left(P_{2} \circ P_{1}^{\top}\right)_{\#} q_{1}^{(2)}, q_{0}^{(2)}\right), \mathcal{W}_{2}^{2}\left(\left(P_{L-1}^{\top}\right)_{\#} q_{1}^{(L)}, q_{0}^{(L)}\right), ~+\cdots+{ }^{(L)}\right)
$$

Solution: We approximate the optimization with a coordinate descent algorithm that converges to a local minimum of the Wasserstein distance.

MLP on MNIST

ResNet20 on CIFAR10

ニーー VI (Train) $ニ ー ー$ VI with distr. alignment (Train) -O VI (Test) -O VI with distr. alignment (Test)
\rightarrow Loss barriers always appear between two solutions in the standard VI approach
\rightarrow With alignment we can find solutions with zero loss barrier for MLPs and nearly－zero loss barrier for ResNet2O．

On permutation symmetries in Bayesian neural network posteriors: a variational perspective

Follow the QR code for the poster schedule and location

STEL NTIS

- Ainsworth, Samuel, Jonathan Hayase, and Siddhartha Srinivasa (2023). "Git Re-Basin: Merging Models modulo Permutation Symmetries". In: The Eleventh International Conference on Learning Representations.
- Entezari, Rahim et al. (2022). "The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks". In: International Conference on Learning Representations.

[^0]: Ainsworth, Samuel, Hayase, Jonathan, and Srinivasa, Siddhartha. 2023.

[^1]: Ainsworth, Samuel, Hayase, Jonathan, and Srinivasa, Siddhartha. 2023.

