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Background

Neural Architecture Search (NAS) automates the DNN design.

Given a task, dataset and search space, we find architectures that obtain 

high accuracy and hardware-friendliness (e.g., FLOPs, latency, etc.)

➢ Search Space

➢ Macro Structure: ResNets, MobileNets, etc. 

➢ Micro Structure: Cell-based NAS-Bench-101 or 201.

➢ Problems? The search space is predefined.

➢ By expert knowledge/heuristics

➢ Bounds on performance limits.

➢ May not be hardware friendly.
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Our Contribution: AutoGO

Framework for optimizing networks for performance 

and hardware-friendliness.

• Adjust low-level Computational Graphs.

• Data-driven mining of computational segments from 

benchmarks.

• Tests on popular CV tasks like classification, 

segmentation, etc.

• Applicable in deployment scenarios – we use it to 

optimize power and latency on proprietary networks 

for Huawei NPUs. 
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Building a Segment Database

Computational Graphs:

➢ DAGs with primitive operation nodes (e.g., Conv, Add, ReLU).

➢ Encode spatially-sensitive features like I/O HWC.

Data Driven Extraction:

➢ Use topological sort to convert graphs into sequences.

➢ Apply Byte-Pair Encoding (BPE), tokenization from NLP.

➢ This is a form of Frequent Subgraph Mining, used to build database.

Segments:

➢ CG subgraphs extracted from existing NAS Benchmarks.

➢ Can vary in #nodes, #edges, topology, inputs, outputs, etc.

➢ Unit of mutation in AutoGO.
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PSC and Mutation-driven search

PSC:

➢ 3 components of an architecture we mutate.

➢ Segment S, to replace with S’ from the database 

➢ Predecessor P 

➢ suCcessor C 

➢ Any CG consists of many P, S, C permutations.

PSC Predictor:

➢ Designed for Segment mutation-based NAS.

➢ Aware and sensitive to the mutation context.

➢ GNN encodes P, S and C subgraphs separately, so 

changes in performance for mutant architectures are 

attributed to mutating S -> S’. 

➢ Use an MILP to ensure network functionality.
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Results

Family Method Set5 

PSNR

Set14

PSNR

BSD100

PSNR

Urban100 

PSNR

Manga109

PSNR

Delta

FLOPs

EDSR

Baseline 36.89 32.57 31.39 29.14 36.08 --

AutoGO Arch 1 38.01 33.62 32.18 31.56 38.49 -16.31%

AutoGO Arch 2 37.97 33.55 32.16 31.53 38.47 -21.99%

AutoGO Arch 3 38.01 33.58 32.16 31.46 38.44 -25.53%

Family Method ImageNet
Top-1

Delta Acc Cityscapes
mIoU

Delta mIoU PCK Delta 
FLOPs

VGG16
Baseline 74.18% -- 65.36% -- 85.92% --

AutoGO 74.91% +0.73% 66.91% +1.55% 85.99% -21.00%

Family Method ImageNet

Top-1

Delta Acc FLOPs

(Giga)

Delta FLOPs

ResNet-50

Baseline 74.02% -- 6.29 --

AutoGO Arch 1 75.34% +1.32% 6.71 +6.68%

AutoGO Arch 2 75.66% +1.64% 5.88 -6.52%

ResNet-101

Baseline 75.09% -- 13.76 --

AutoGO Arch 1 76.56% +1.47% 13.66 -0.73%

AutoGO Arch 2 75.69% +0.60% 13.35 -2.98%

Image Classification

Image Classification,

Semantic Segmentation

And Pose Estimation

Super Resolution
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