

# PDP: Parameter-free Differentiable Pruning is All You Need

Minsik Cho, Saurabh Adya, Devang Naik (minsik@apple.com) NeurIPS 2023 · Apple Inc.

# Methods

### **Differentiable pruning without extra-parameters**

- Learning masks is expensive
- Extra-parameter overheads
- Complex training recipes and flows
- Dynamically inferring the soft masks
- Capture the weight distributions using a threshold
- Use probabilistic masks for differentiability
- Second chances for the weights on the boundary
- Easily expanded to structured pruning

### **GPT2+OpenWebText**

| Method   | Perplexity | Model<br>#param | Extra<br>#param | GPU<br>cost(\$) |  |  |
|----------|------------|-----------------|-----------------|-----------------|--|--|
| Dense    | 22.4       | 163M            | 0               |                 |  |  |
| GMP [58] | 37.7       | 163M            | 0               | 6997            |  |  |
| OptG     | 33.7       | 163M            | 124M            | 11210           |  |  |
| PDP      | 33.7       | 163M            | 0               | 7499            |  |  |
|          | 55.7       | 105101          | U               | 7777            |  |  |



STR: soft-threshold weight reparameterization for learnable sparsity [ICML20] GradNet: Sparsity training via boosting pruning plasticity with neuroregeneration [NeurIPS21] OptG: Optimizing gradeint-driven criteria in network sparsity [CoRR22] ACDC: Alternating compressed/decompressed training of deep neural networks [NeurIPS21]



| Resu                                      | ts                              | BERT + GLUE:MNLI      |                 |           |              |      |                              |                                        |      |                   |          | ResNet18/50 Structured N:M pruning + ImageNet1k                                                                             |                                       |           |                |      |       |      |             |           |  |  |
|-------------------------------------------|---------------------------------|-----------------------|-----------------|-----------|--------------|------|------------------------------|----------------------------------------|------|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------|----------------|------|-------|------|-------------|-----------|--|--|
| Validation Sparsity                       |                                 |                       |                 |           | Methods      |      |                              |                                        |      | _                 | Network  | Method                                                                                                                      | Batch size                            | #enochs   | N:M            |      |       |      | avg GPU     |           |  |  |
|                                           |                                 | dataset               |                 | Dense     | STR*         | OptG | GMP                          | MVP                                    | POFA | PDP               |          |                                                                                                                             | Internou                              |           | <i>nepoens</i> | 2:4  | 4:8   | 1:4  | 2:8         | cost (\$) |  |  |
|                                           |                                 | matched               | 90              | 84.5      | 75.8         | 78.5 | n/a                          | 81.2                                   | 81.5 | 83.1              |          | ResNet18                                                                                                                    | LNM                                   | 256       | 120            | 69.6 | 70.2  | 65.1 | 68.4        | 395       |  |  |
|                                           |                                 |                       | 94              |           | 74.4         | 76.9 | 74.8                         | 80.7                                   | n/a  | 82.0              |          |                                                                                                                             | PDP                                   | 1024      | 100            | 70.2 | 70.1  | 68.7 | <b>69.1</b> | 275       |  |  |
|                                           |                                 | mismatched            | 90              | 84.9      | 76.3         | 78.3 | n/a                          | 81.8                                   | 82.4 | 83.0              |          | ResNet50                                                                                                                    | LNM                                   | 256       | 120            | 74.6 | 75.1  | 74.1 | 75.0        | 812       |  |  |
|                                           |                                 |                       | 94              |           | 74.1         | 76.5 | 75.6                         | 81.2                                   | n/a  | 82.4              |          |                                                                                                                             | PDP                                   | 1024      | 100            | 75.9 | 75.8  | 75.0 | 75.3        | 380       |  |  |
|                                           | 550                             | ResNet50 + ImageNet1k |                 |           |              |      | MobileNetV1 + ImageNet1k     |                                        |      |                   |          |                                                                                                                             | ResNet50 Channel pruning + ImageNet1k |           |                |      |       |      |             |           |  |  |
|                                           | 520                             | GraNet                | ACD             | C         |              |      | 150<br>140                   |                                        |      |                   |          |                                                                                                                             | Method                                | Batch siz | ze   #epo      | ochs | Top-1 | (%)  | MAC         | drop (%)  |  |  |
| (ef ef e | 490                             |                       |                 |           |              |      | $\bigcirc 140 \\ 130$        | Gra                                    | Net  | ACD               | C        |                                                                                                                             | NISP                                  | ?         | 9              | 0    | 75.   | 3    | 4           | 4.0       |  |  |
|                                           | 460                             |                       |                 | PDP-base+ |              |      | () 120                       |                                        |      |                   |          |                                                                                                                             | DCP                                   | 256       | 6              | 0    | 75.   | 0    | 5           | 5.0       |  |  |
|                                           | 400                             |                       |                 | Ģ         | $\mathbf{O}$ |      | <b>1</b> 10                  |                                        |      |                   | PDP-optg | · •                                                                                                                         | SCP                                   | 256       | 10             | 00   | 75.   | 3    | 5           | 4.3       |  |  |
|                                           | 370                             | STR                   | PDP             | -base     |              |      | $\sum 100$                   |                                        |      |                   |          |                                                                                                                             | PDP                                   | 1024      | 10             | 00   | 75.   | 9    | 5           | 49        |  |  |
| <b>H</b>                                  | 340                             |                       |                 |           |              |      |                              |                                        |      | OptG              | G        |                                                                                                                             |                                       | 1021      |                |      | 100   |      |             |           |  |  |
| Inferei                                   | 310<br>280<br>250<br>220<br>66% | <b>bptG</b><br>67%    | <b>PDP-optg</b> | ۰<br>59%  | 70%          |      | <b>191911</b> 50<br>40<br>61 | •••••••••••••••••••••••••••••••••••••• |      | PDP-base -<br>67% | 69%      | Easy to expand to structured pruning<br>Low cost training due to being parameter-free<br>SOTA results on ResNets+ImageNet1k |                                       |           |                |      |       |      |             |           |  |  |
| Top-1 Accuracy                            |                                 |                       |                 |           |              |      | <b>Top-1 Accuracy</b>        |                                        |      |                   |          |                                                                                                                             |                                       |           |                |      |       |      |             |           |  |  |
|                                           |                                 |                       |                 |           |              |      |                              |                                        | -    |                   | -        |                                                                                                                             |                                       |           |                |      |       |      |             |           |  |  |

GMP: To prune or not to prune: Exploring the efficacy of pruning for model compression [ICLR18] DNW: Discovering neural wings [NeurIPS19] MVP: Movement pruning: Adapative sparsity by fine-tuning [NeurIPS20] POFA: Prune once for all: Sparse pre-trained language models [NeurIPS21]



LNM: Learning N:M fine-grained structured sparse neural networks from scratch [ICLR21] NISP: pruning networks using neuron importance score propagation [CVPR18] DCP: Discrimination-aware channel pruning for deep neural networks [NeurIPS19] SCP: Operation-aware soft channel pruning using differentiable masks [ICML20]



# Masked weight $\hat{w} = m(w) \cdot w = -$ Weight gradient $\Delta w = m(w)\Delta \hat{w} + 2\frac{w^2}{m(w)}\{1 - m(w)\}\Delta \hat{w}$ **Conventional gradient Always Positive** Maximized when m(w)=0.5 from masked weight

Accelerate the learning of weights on the pruning boundary

Additional gradient is zero when m(w) is 0 or 1

• au is an inverse scaling factor