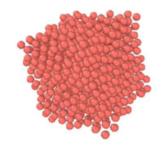


CARE: Modeling Interacting Dynamics Under Temporal Environmental Variation

Xiao Luo¹, Haixin Wang², Zijie Huang¹, Huiyu Jiang³,

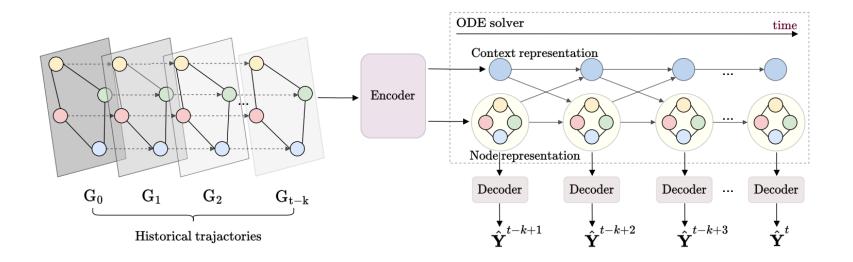

Abhijeet Sadashiv Gangan¹, Song Jiang¹, Yizhou Sun¹

¹University of California, Los Angeles

²Peking University, ³University of California, Santa Barbara

Interacting Systems are Dynamic in Nature

- In interacting systems, objects would interact with each other and demonstrate complicated behavior along the time.
- Example: Molecular dynamical system



Challenges: Changeable System Environment

- Example: Different temperatures and pressures
- Temporal environmental variation would indicate different data distributions over the time

• Continuous distribution variation is difficult to capture

Overall Framework

Assumption 4.1. (Independence-I) The context variable is independent of the sequences before the last observed timestamp, i.e., $P(\mathbf{c}^t | \mathbf{c}^{t-k}, G^{0:t}) = P(\mathbf{c}^t | \mathbf{c}^{t-k}, G^{t-k:t})$, where t - k is the last observed timestamp.

Assumption 4.2. (Independence-II) Given the current states and contexts, the future trajectories are independent of the previous trajectories and contexts, i.e., $P(\mathbf{Y}^{t-k:t+l}|G^{0:t-k}, \mathbf{c}^{0:t-k}) = P(\mathbf{Y}^{t-k:t-k+l}|G^{t-k}, \mathbf{c}^{t-k})$ where l is the length of the prediction.

$$P\left(\boldsymbol{Y}^{t} \mid G^{0:t-1}\right) = \int P\left(\boldsymbol{Y}^{t} \mid \boldsymbol{c}^{t-1}, G^{t-1}\right) \cdot P\left(\boldsymbol{c}^{t-1} \mid \boldsymbol{c}^{t-k}, G^{t-k:t-1}\right) \cdot P\left(\boldsymbol{c}^{t-k} \mid G^{0:t-k}\right) d\boldsymbol{c}^{t-1} d\boldsymbol{c}^{t-k}$$

• Divide each training sequence into two parts, namely [0,t-k], (t-k,t]

UCLA

Context Acquirement

• Construct a temporal graph connecting all the observations.

$$oldsymbol{h}_i^{s,(l+1)} = oldsymbol{h}_i^{s,(l)} + \sigma \left(\sum_{j^{s'} \in \mathcal{N}(i^s)} w^{(l)}(i^s,j^{s'}) oldsymbol{W}_{value} oldsymbol{h}_j^{s',(l)}
ight),$$

$$q_i^s = h_i^{s,(L)} + \text{TE}(s), \quad u_i^{t-k} = \frac{1}{t-k+1} \sum_{s=0}^{t-k} \sigma(W_{sum} q_i^s),$$

$$\beta_i^t = tanh((\frac{1}{|V|}\sum_{i'\in V} \boldsymbol{u}_{i'}^{t-k})\boldsymbol{W}_{context}) \cdot \boldsymbol{u}_i^{t-k}, \quad \boldsymbol{c}^{t-k} = \sum_{i\in V} \beta_i^t \boldsymbol{u}_i^{t-k},$$

Context-attended Graph ODE

 We then introduce coupled ODEs to model the dynamic evolution of node representations and the context variable. Specifically, the context variable can be inferred during the evolution of node representations, which in turn drives the evolution of the system.

$$egin{aligned} &rac{dm{v}_i^s}{ds} = \Phi([m{v}_1^s,\cdots,m{v}_N^s,m{c}^s]) = \sigma(\sum_{j\in\mathcal{N}^s(i)}rac{\hat{A}_{ij}^s}{\sqrt{\hat{D}_i^s}\cdot\hat{D}_j^s}m{v}_j^sm{W}_1 + m{c}^sm{W}_2), \ &rac{dm{c}^s}{ds} = \Phi^c(ext{AGG}(\{m{v}_i^s\}_{i\in V}), ext{AGG}(\{rac{dm{v}_i^s}{ds}\}_{i\in V}),m{c}^s]), \end{aligned}$$

UCLA

Decoder and Optimization

• Generate the predictions:

$$[\hat{oldsymbol{p}}_i^s, \hat{oldsymbol{q}}_i^s] = \Phi^d(oldsymbol{v}_i^s)$$
 ,

• Learning Objective:

$$\mathcal{L} = \sum_{s=t-k}^t ||\hat{oldsymbol{Y}}^s - oldsymbol{Y}^s|| + \eta(|| ilde{oldsymbol{V}}^s - oldsymbol{V}^s|| + || ilde{oldsymbol{c}}^s - oldsymbol{c}^s||),$$

Results

Prediction Length	+1			+5			+10			+20		
Variable	v_x	v_y	v_z	$ v_x$	v_y	v_z	v_x	v_y	v_z	$ v_x $	v_y	v_z
Lennard-Jones Potential												
LSTM	3.95	3.92	3.68	9.12	9.21	9.15	10.84	10.87	10.76	14.82	14.94	14.67
GNS	3.28	3.75	3.39	7.97	8.05	7.68	10.09	10.15	10.13	13.65	13.62	13.59
STGCN	2.91	3.08	2.95	5.06	5.17	5.11	6.89	6.90	6.93	9.31	9.32	9.44
MeshGraphNet	2.89	3.13	2.94	5.29	5.53	5.28	7.03	7.09	7.11	9.12	9.21	9.24
CG-ODE	1.79	2.05	1.71	3.47	3.92	3.38	5.46	5.99	5.36	9.03	9.26	8.92
TIE	1.62	1.98	1.47	3.25	3.90	3.15	5.24	5.82	5.17	8.24	8.34	8.47
Ours	0.76	0.89	1.01	2.94	3.16	2.85	5.01	4.69	4.71	5.75	5.91	5.82
3-body Stillinger-Weber Potential												
LSTM	17.11	17.14	17.18	23.64	23.69	23.60	25.46	25.42	25.48	28.44	28.45	28.44
GNS	15.39	15.27	15.33	22.14	22.19	22.17	25.29	25.36	25.31	27.18	27.15	27.14
STGCN	12.33	12.31	12.35	17.94	17.96	17.91	20.08	20.14	20.13	23.49	23.51	23.52
MeshGraphNet	12.16	12.10	12.13	18.33	18.38	18.34	20.65	20.62	20.71	23.62	23.54	23.61
CG-ODE	9.78	9.74	9.75	12.11	12.05	12.14	15.55	15.58	15.50	16.17	16.24	16.22
TIE	10.18	10.26	10.19	14.75	14.70	14.73	18.42	18.45	18.41	20.92	21.04	21.36
Ours	4.21	4.29	4.18	9.74	9.79	9.71	13.65	13.71	13.57	15.30	15.39	15.35

Table 1: The RMSE (×10⁻²) results of the compared methods with the prediction lengths 1, 5, 10 and 20. v_x , v_y and v_z represent the velocity in the direction of each coordinate axis.

Results

Table 2: The RMSE results of the compared methods over different prediction lengths 1, 10, 20 and $50. v_x, v_y$ and p represent the velocity in different directions and the pressure field, respectively.Prediction Length | +1 | +10 | +20 | +50

Prediction Length	+1			+10			+20			+50		
Variable	$\mid v_x$	v_y	p	$ v_x$	v_y	p	$\mid v_x$	v_y	p	$\mid v_x$	v_y	p
CylinderFlow												
LSTM	3.35	29.4	12.5	7.06	44.8	17.8	9.47	49.5	19.9	14.3	73.6	42.3
GNS	3.12	28.8	11.9	7.18	44.3	17.3	9.01	49.6	19.2	13.5	73.2	41.6
STGCN	2.68	26.7	11.0	5.47	42.1	16.9	6.72	45.6	18.4	9.15	68.7	40.0
MeshGraphNet	1.75	22.4	10.6	4.09	39.7	15.7	5.38	44.5	17.2	7.92	64.3	37.7
CG-ODE	1.05	20.4	8.51	3.44	36.8	13.6	4.15	38.5	17.1	5.14	61.2	32.3
TIE	1.22	20.8	8.94	3.75	35.2	13.0	4.62	40.6	16.0	5.87	59.5	32.1
Ours	0.87	19.1	7.21	3.02	32.9	11.8	3.95	37.8	13.9	4.97	55.8	29.4
Airfoil												
LSTM	7.49	7.73	1.92	8.86	9.02	3.78	10.8	11.0	4.71	14.9	15.7	4.96
GNS	6.95	7.14	1.69	8.20	8.34	3.34	10.2	10.5	3.98	14.2	14.1	4.11
STGCN	6.24	5.35	1.07	6.57	6.51	2.33	7.88	8.01	3.16	11.6	11.8	3.17
MeshGraphNet	4.72	4.68	0.50	5.89	5.74	1.23	6.32	6.48	1.85	9.03	9.12	2.08
CG-ODE	4.26	4.32	0.35	4.78	4.70	0.46	5.81	5.66	1.04	7.39	7.85	1.69
TIE	4.17	4.39	0.33	4.99	4.86	0.51	5.75	5.62	0.95	7.25	7.63	1.44
Ours	3.51	4.11	0.19	3.86	3.75	0.34	4.16	4.12	0.45	6.74	6.82	0.81

Thank You