Slimmed Asymmetrical Contrastive Learning and Cross Distillation for Lightweight Model Training

¹Jian Meng, ²Li Yang, ³Kyungmin Lee, ³Jinwoo Shin, ⁴Deliang Fan, ¹Jae-sun Seo

¹Cornell Tech, USA, ²University of North Carolina at Charlotte, USA ³KAIST, South Korea, ⁴John Hopkins University, USA

Contrastive (Self-supervised) Learning

- Unsupervised representation learning leads to strong performance in various downstream tasks
 - Training ResNet-50 on ImageNet-1K with supervised and self-supervised learning (SSL):

Method	CIFAR-10	CIFAR-100	Aircraft	Flowers	Birdsnap
Supervised (from scratch)	94.8	78.2	83.8	92.0	76.0
Supervised-Fine-tuned [1]	97.5	86.1	86.0	97.6	75.8
BYOL-SSL-Fine-tuned [1]	97.8	86.4	88.1	97.0	76.3

Learning powerful visual representation comes with cost...

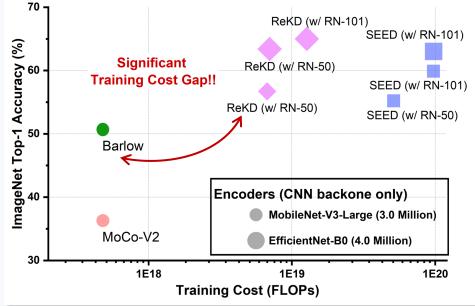
- The recent contrastive learning-based self-supervised learning requires wide and deep models.
- Lightweight / sparse model (e.g., MobileNet) are largely ignored in contrastive learning.

Powerful contrastive learning requires large-sized models, while the smallscale vision tasks are widely existing in the resource constrained edge devices. Strong vision learners \neq Superior compatibility on edge

Lightweight Contrastive Learning

- Insufficient learnability of model → Knowledge distillation (KD) with a strong teacher
 - SEED (Fang, ICLR'21): Pretrained teacher with CL (800 ep), distillation without labels (200 ep).
 - ReKD (*Zheng, AAAI'22*): Pretrained teacher with CL (800 ep), distillation with relation knowledge (200 ep)
 - DisCo (Gao, ECCV'22): Frozen Pre-trained teacher + distilling the target student with both "teacher" and "mean student"
- Despite the distillation schemes, a strong teacher becomes an almost mandatory requirement.
 - Extreme training cost compared to vanilla contrastive learning.

Is there a contrastive learning algorithm that can train the high-performance lightweight model without using a mega-sized teacher?

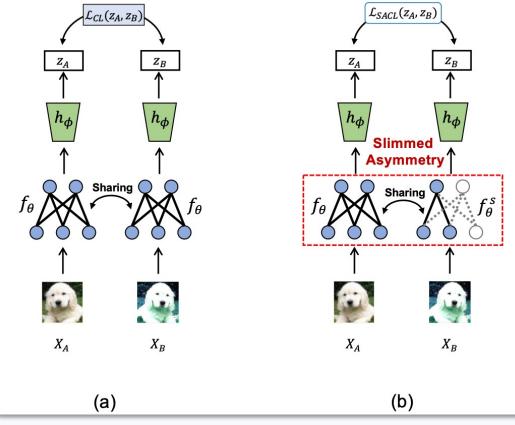


Slimmed Asymmetric Contrastive Learning (SACL)

- Question: The necessity of employing the large ResNet teacher haven't been fully justified.
 - Can we have a lighter teacher for faster training?
- Slimmed Asymmetric Contrastive Learning (SACL)
 - Lightweight model can be considered as a subset model "sliced" from a wide, full-sized *host model.*
 - The host model θ is sliced by removing a unified amount of input and output channels to formulate θ_s:

 $\theta_s \subset \theta$ and $\theta_s = \theta \cdot \mathcal{M}$

- Where \mathcal{M} is the weight mask that disables **both** input and output channel with a given slice ratio (K×-1×)
- Input X_A and X_B are separately encoded by the *host* and the *slimmed* encoder



- (a) Normal contrastive learning
- (b) Proposed slimmed asymmetry contrastive learning

Cross Distillation (XD)

- Asymmetry is not the "one-and-done" solution for lightweight CL due to the sparsity-induced distortion.
 - How to further enhance the training performance?
- Given the asymmetrical contrastive encoders f_{θ} and f_{θ}^{s} ,
 - We first encode X^A and X^B based on SACL, leading to the embeddings z^A and z^B

$$X^{A} \to f_{\theta} \to z^{A}$$
$$X^{B} \to f_{\theta}^{s} \to z^{B}$$

• Subsequently, we freeze both f_{θ} and f_{θ}^{s} , while reversing the order of inputs for encoding

$$X^B \to [f_\theta] \to [\hat{z}^B]$$
$$X^A \to [f_\theta^s] \to [\hat{z}^A]$$

Where $[\cdot]$ represents the frozen encoder.

Cross Distillation (Continued)

- Now we have a pair of latent code (e.g., z^A and [z^A]) for each input (e.g., X^A) that contains the latent information distorted by sparsity **only**.
 - To minimize the discrepancy, we compute the cross-distillation loss \mathcal{L}_{CD} as:

augn

$$\mathcal{L}_{\text{CD}} = \frac{\mathcal{L}_{\text{CD}}^{A}(z^{A}, [\hat{z}^{A}]) + \mathcal{L}_{\text{CD}}^{B}(z^{B}, [\hat{z}^{B}])}{2}$$

• We define the total training loss as the weighted combination between contrastive loss \mathcal{L}_{SACL} and cross-distillation loss \mathcal{L}_{CD}

$$\mathcal{L} = \alpha \mathcal{L}_{SACL} + (1 - \alpha) \mathcal{L}_{CD}$$

$$\uparrow$$
Loss contains
Loss that minimizes
asymmetry only

Cross Distillation (Continued)

- Why cross-distillation?
 - Cross distillation enables the optimization across the **feature dimensions** inside latent space
- When the encoders are completely dense (no SACL):
 - $C_{ii}^{AA} \rightarrow 1.0$, inner-correlation loss $\rightarrow 0.0$

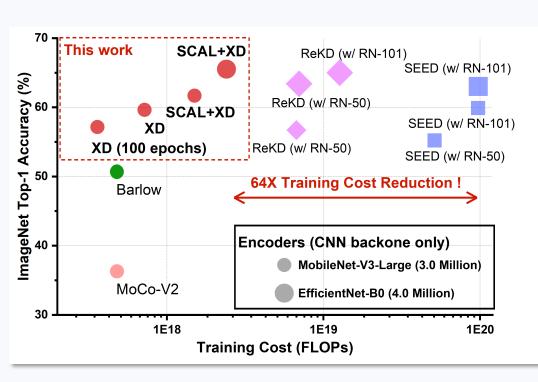
Method	Linear Eval. Acc (%)	Training Epochs	Pretrained Teacher
ReKD	56.70	200	ResNet-50
SEED	55.20	200	ResNet-50
XD (Ours)	57.16	100	N/A

MobileNet-V3 ImageNet-1K Linear evaluation accuracy comparison between XD (proposed) and SOTA methods

- Minimizing \mathcal{L}_{CD} avoids the aliasing feature across different dimensions
 - Decorrelation at the embedding level ultimately has a decorrelation effect at the representation level
 - Outperform previous SOTA method <u>without</u> heavy distillation and pre-trained teacher

Slimmed Asymmetrical CL (SACL) + Cross Distillation (XD)

- New SoTA Performance on lightweight contrastive learning
 - 64× training cost reduction compared to SOTA lightweight contrastive learning method.
 - Train from scratch with lightweight encoder (e.g., EfficientNet, MobileNet).



Method	Encoder	Linear Eval. (%)	Epochs	Pre-train	Teacher	Training FLOPs (e+17)
[‡] SACL-XD (Ours)	Eff-B0 $(1.5 \times -1 \times)$	65.32 (+2.12)	200	×	-	24 (2.9 ×↓)
§SACL-XD (Ours)	Mob-V3 $(1.5 \times -1 \times)$	61.69 (+1.79)	200	×	-	15 (64.7 ×↓)
SACL-XD (Ours)	Mob-V1 $(1.5 \times -1 \times)$	59.34	200	×	-	19
XD only (Ours)	Mob-V3 $(1 \times)$	59.42	200	×	-	7.2
XD only (Ours)	Mob-V3 $(1 \times)$	57.16	100	×	-	3.6
XD only (Ours)	Mob-V1 $(1 \times)$	55.84	100	×	-	9.0
[§] SSL-Small [24]	Mob-V3 (1×)	48.70	200	×	-	67
[§] SL-Small [24]	Eff-B0 $(1 \times)$	55.90	200	×	-	67
ReKD 32	Mob-V3 (1×)	56.70	200	×	ResNet-50	67
ReKD 32	Mob-V3 (1×)	59.60	200	×	ResNet-101	125
ReKD [32]	Eff-B0 $(1 \times)$	63.40	200	×	ResNet-50	70
OSS 9	Eff-B0 (1×)	64.10	800+200	×	ResNet-50	67
*SEED [14]	Mob-V3 (1×)	55.20	800+200	\checkmark	ResNet-50	512
*SEED [14]	Mob-V3 (1×)	59.90	800+200	✓	ResNet-101	971
*SEED [14]	Eff-B0 $(1 \times)$	61.30	800+200	1	ResNet-50	516
[†] MoCo-V2 [7]	Mob-V3 $(1 \times)$	36.30	200	×	-	4.8
[†] MoCo-V2 [7]	Eff-B0 $(1 \times)$	42.20	200	×	-	8.5

Substantial training cost reduction of the proposed method

Cornell University.

Universal SOTA performance for both XD and SACL + XD

Slimmed Asymmetrical CL (SACL) + Cross Distillation (XD)

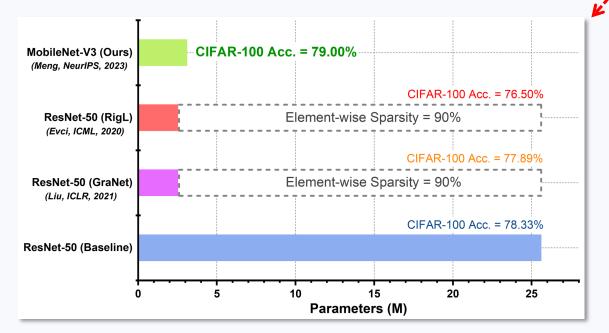
New SoTA Performance on downstream vision tasks

Method	Encoder	CIFAR-10	CIFAR-100	Aircraft	Flowers	Cars
Supervised (from scratch)	Mob-V3	92.97	73.69	65.37	79.89	68.18
Supervised-FT	Mob-V3	94.53	78.56	68.29	89.94	82.43
XD (Ours, 100 ep)	Mob-V3	94.80	79.00	71.39	90.05	82.77
SACL + XD (Ours)	Mob-V1 (1.5× – 1×)	94.92	79.64	72.21	90.48	83.14

Downstream performance of the lightweight model pre-trained on ImageNet-1K + minimum fine-tuning

- From the efficient inference point of view...
 - High-performance unsupervised pre-training of SACL+XD empower the lightweight model with strong visual representation
 - Arguably, the superior downstream performance of lightweight model outperforms <u>supervised pruning</u>
 - Dedicated sparse accelerator is NOT required

Cornell University.



Conclusion

- We propose a novel contrastive learning algorithm which trains the powerful lightweight encoder without introducing strong teacher
- We have investigated the lightweight contrastive learning from the perspectives of latent space and aliasing reduction.
- With the proposed cross-distillation and slimmed asymmetric CL, our method empower the lightweight
 model with highly efficient contrastive learning, leading to the strong accuracy-efficiency tradeoff.

Thank you!

