

Reining Generalization in Offline Reinforcement Learning via Representation Distinction

Yi Ma¹, Hongyao Tang^{2,*}, Dong Li³, Zhaopeng Meng¹

1 College of Intelligence and Computing, Tianjin University
2 Université de Montréal, Mila
3 Noah's Ark Lab, Huawei Technology
* Corresponding authors

- Problem Formulation
- Method
- Experimental Results

Problem Formulation: Backup-Generalization Cycle in Offline RL

• We introduce a view called Backup-Generalization Cycle. This view, as depicted in the Fig below, fosters an understanding of typical offline value function learning via two key components: **Backup** and **Generalization**:

This dynamic interplay forms a cycle:

(1) the backups on $(s, a) \in D$ consistently influence the values of $(s, a) \notin D$ through generalization;

(2) the consistently changing $Q(s', \pi(s'))$ participates in the backups on $(s, a) \notin D$;

The two kinds of dynamics iterate and twine during the learning process.

Problem Formulation: Overgeneralization in Offline RL

Further, we consider how Q function update caused by typical Temporal-Difference (TD) learning on a single state-action pair $(s, a) \in D$ (denoted as $\phi \to \phi'$), affects the Q-value of an arbitrary state-action pair (\bar{s}, \bar{a}) .

The post-update parameter ϕ' can be formalized as follows:

$$\phi' = \phi + (\mathcal{T}Q_{\phi}(s,a) - Q_{\phi}(s,a))\nabla_{\phi}Q_{\phi}(s,a)$$

By Taylor expansion at the pre-update parameter ϕ :

$$Q_{\phi'}(\bar{s},\bar{a}) = Q_{\phi}(\bar{s},\bar{a}) + \nabla_{\phi}Q_{\phi}(\bar{s},\bar{a})^{T}(\phi'-\phi) + \mathcal{O}\left(\parallel \phi'-\phi \parallel^{2}\right)$$

By plugging the first Eq to the second Eq:

$$Q_{\phi'}(\bar{s},\bar{a}) = Q_{\phi}(\bar{s},\bar{a}) + k_{\phi}(\bar{s},\bar{a},s,a) \left(\mathcal{T}Q_{\phi}(s,a) - Q_{\phi}(s,a) \right) + \mathcal{O}\left(\parallel \phi' - \phi \parallel^2 \right)$$

where $k_{\phi}(\bar{s}, \bar{a}, s, a) = \nabla_{\phi} Q_{\phi}(\bar{s}, \bar{a})^T \nabla_{\phi} Q_{\phi}(s, a)$, which us called Neural Tangent Kernel. We can control the generalization by mainly adjusting this kernel.

Method: Reining Generalization via Two-Stage Kernel Control

Suppress $Q(s,a) \xrightarrow{\text{generalization}} Q(s,\pi(s))$ for $(s,a) \in D$ by $\min_{\phi} | \nabla_{\phi} Q_{\phi}(s,a)^T \nabla_{\phi} Q_{\phi}(s,\pi(s)) |$ When the learning policy evolves and resembles the behavioral policy $min_{\phi} | \nabla_{\phi} Q_{\phi}(s, a)^T \nabla_{\phi} Q_{\phi}(s, \pi(s)) |$ for $a \approx \pi(s)$ could lead to over-inhibition

Suppress the generalization between the learning policy distribution and the designed OOD policy distribution by $min_{\phi} | \nabla_{\phi} Q_{\phi}(s, \pi(s))^T \nabla_{\phi} Q_{\phi}(s, \pi_{ood}(s)) |$

Policy-Dataset Generalization Inhibition

Over-Inhibition when Distributions Overlap

Learned OOD Policy Distribution

NEURAL INFORMATION PROCESSING SYSTEMS

Results

Table 1: Results of different algorithms and the ones equipped with RD								
DATASET	TD3-N-UNC	TD3-N-UNC +RD	SAC-N-UNC	SAC-N-UNC +RD	TD3BC	TD3BC +RD	CQL	CQL +RD
HALFCHEETAH-M	66.8 ± 0.5	$\textbf{66.8} \pm \textbf{1.2}$	65.9 ± 1.0	$\textbf{65.9} \pm \textbf{1.9}$	48.0 ± 0.3	$\textbf{48.3} \pm \textbf{0.5}$	47.1 ± 0.2	$\textbf{53.0} \pm \textbf{0.5}$
HALFCHEETAH-MR	53.4 ± 3.9	$\textbf{57.7} \pm \textbf{0.9}$	53.2 ± 5.4	$\textbf{61.5} \pm \textbf{1.4}$	44.6 ± 0.3	44.6 ± 0.5	45.2 ± 0.6	$\textbf{51.6} \pm \textbf{0.9}$
HALFCHEETAH-ME	97.7 ± 2.2	$\textbf{101.1} \pm \textbf{0.4}$	99.4 ± 2.5	$\textbf{102.5} \pm \textbf{1.8}$	90.5 ± 6.6	$\textbf{93.9} \pm \textbf{2.9}$	81.1 ± 6.0	$\textbf{90.2} \pm \textbf{5.8}$
HOPPER-M	41.9 ± 50.5	$\textbf{103.0} \pm \textbf{0.8}$	45.7 ± 41.0	$\textbf{102.8} \pm \textbf{0.2}$	60.4 ± 4.0	$\textbf{61.0} \pm \textbf{2.6}$	65.0 ± 6.1	$\textbf{74.9} \pm \textbf{7.1}$
HOPPER-MR	92.5 ± 18.1	$\textbf{104.1} \pm \textbf{0.8}$	104.7 ± 0.9	104.6 ± 0.4	61.2 ± 20.5	$\textbf{72.1} \pm \textbf{8.4}$	87.7 ± 14.4	$\textbf{100.3} \pm \textbf{3.2}$
HOPPER-ME	100.3 ± 22.6	$\textbf{110.7} \pm \textbf{0.6}$	110.9 ± 0.2	110.6 ± 0.3	105.4 ± 6.1	104.8 ± 2.8	93.9 ± 14.3	$\textbf{98.2} \pm \textbf{9.7}$
WALKER2D-M	69.9 ± 35.2	$\textbf{97.6} \pm \textbf{3.4}$	24.2 ± 28.2	$\textbf{92.3} \pm \textbf{1.3}$	82.7 ± 5.5	$\textbf{83.7} \pm \textbf{2.7}$	80.4 ± 3.5	$\textbf{84.5} \pm \textbf{1.0}$
WALKER2D-MR	91.6 ± 2.7	$\textbf{92.1} \pm \textbf{2.7}$	85.2 ± 2.7	$\textbf{86.9} \pm \textbf{3.1}$	82.1 ± 2.5	$\textbf{84.8} \pm \textbf{1.4}$	79.2 ± 5.0	$\textbf{94.4} \pm \textbf{2.5}$
WALKER2D-ME	90.6 ± 45.0	$\textbf{118.8} \pm \textbf{1.2}$	113.1 ± 9.6	$\textbf{116.4} \pm \textbf{1.5}$	110.2 ± 0.5	110.1 ± 0.5	109.7 ± 0.5	$\textbf{113.0} \pm \textbf{0.5}$

Table 2: Average normalized	scores of our methods an	nd previous methods	on the D4RL	benchmark

DATASET	BC	DT	TD3BC	CQL	IQL	EDAC	DIFFUSION-QL	SAC-N-UNC +RD	TD3-N-UNC +RD
HALFCHEETAH-R	2.2	2.2	11.0	31.3	13.7	28.4	22.0	25.4	31.0
HOPPER-R	3.7	5.4	8.4	5.3	8.4	25.3	18.3	31.6	31.7
WALKER2D-R	1.3	2.2	1.7	5.4	5.9	16.6	5.5	21.2	21.7
HALFCHEETAH-M	42.6	42.6	48.0	47.1	47.4	65.9	51.5	65.9	66.8
HOPPER-M	52.9	67.6	60.4	65.0	66.3	101.6	96.6	102.8	103.0
WALKER2D-M	75.3	74.0	82.7	80.4	78.3	92.5	87.3	92.3	97.6
HALFCHEETAH-MR	36.6	36.6	44.6	45.2	44.2	61.3	48.3	61.5	57.7
HOPPER-MR	18.1	82.7	61.2	87.7	94.7	101.0	102.0	104.6	104.1
WALKER2D-MR	26.0	66.6	82.1	79.2	73.9	87.1	98.0	86.9	92.1
HALFCHEETAH-ME	55.2	86.8	90.5	81.1	86.7	106.3	97.2	102.5	101.1
HOPPER-ME	52.5	107.6	105.4	93.9	91.5	110.7	112.3	110.6	110.7
WALKER2D-ME	107.5	108.1	110.2	109.7	109.6	114.7	111.2	116.4	118.8
HALFCHEETAH-E	91.8	87.7	96.7	97.3	94.9	106.8	96.3	108.8	103.1
HOPPER-E	107.7	94.2	107.8	106.5	108.8	110.1	102.6	109.8	108.8
WALKER2D-E	108.7	108.3	110.2	109.3	109.7	115.1	109.5	112.3	111.2
MUJOCO TOTAL	782.1	972.6	1020.9	1044.4	1034.0	1243.4	1158.6	1252.6	1259.4
PEN-HUMAN	25.8	73.9	-1.9	35.2	71.5	52.1	75.7	61.1	77.9
PEN-CLONED	38.3	67.3	9.6	27.2	37.3	68.2	60.8	53.0	65.5
ADROIT TOTAL	64.1	141.2	7.7	62.4	108.8	120.3	136.5	114.1	143.4
TOTAL	846.2	1113.8	1028.6	1106.8	1142.8	1363.7	1295.1	1366.7	1402.8

Thanks

Welcome to communicate and cooperate with Tianjin University Deep Reinforcement Learning Lab

• Homepage: http://rl.beiyang.ren/